DESENVOLVIMENTO DE MAQUETE SONORA PARA A
TRANSMISSÃO DE CONCEITOS GEOGRÁFICOS E
CARTOGRAFICOS PARA ALUNOS DEFICIENTES VISUAIS

Silvia Elena Ventorini¹
Maria Isabel Castreghini de Freitas²
José Antônio dos Santos Borges³
Diogo Fujii Takano⁴

RESUMO

O presente artigo visa divulgar a experiência adquirida no desenvolvimento de uma maquete tática munida de micro-chaves, que ao ser conectada a um computador equipado com o programa Mapavox emite informações sonoras sobre a área tocada. A maquete elaborada vem auxiliando na transmissão de conceitos geográficos e cartográficos para alunos cegos e com baixa acuidade visual, que freqüentam as classes de recursos da escola especial do município de Araras-SP- Brasil.

I-Introdução

A Cartografia Tátil é uma área específica dentro da Cartografia dedicada ao desenvolvimento de procedimentos metodológicos e de material didático tátil para a transmissão de conceitos Geográficos e Cartográficos para alunos cegos e com baixa visão. O material didático usual corresponde a maquetes e mapas táteis.

A cartografia, de modo geral, tem como alvo a elaboração de material cartográfico que é representado por uma linguagem que sintetiza informações, expressa conhecimentos e estuda situações sempre envolvendo conceitos Geográficos como o conhecimento dos aspectos físicos, econômicos e sociais de uma região da Terra.

Os avanços tecnológicos estão revolucionando as formas de representação cartográfica, sejam elas táteis ou não. O pertinente porém, é o alto custo dessa tecnologia, tornando-a inacessível as camadas menos favorecidas da população. Com o intuito contribuir para a amenização desta realidade, pesquisadores da Unesp – campus de Rio Claro – e da UFRJ – Rio de Janeiro- estão unidos por um objetivo comum: utilizar tecnologia de baixo custo na geração de material didático tátil para a transmissão de conceitos Cartográficos e Geográficos para alunos deficientes visuais. Neste sentido, este artigo visa divulgar os resultados obtidos com a experiência de desenvolvimento de uma maquete tátil.

¹ Unesp – sev@rc.unesp.br
² Unesp- ifreitas@rc.unesp.br
³ UFRJ – antonio2@nce.ufrj.br
⁴ UFRJ- Takano@nce.ufrj.br

II-A importância das maquetes para os deficientes visuais

Segundo a Nova Constituição Federal (art. 58, título VIII) entende-se por educação especial a mobilidade de educação escolar oferecida, preferencialmente, na rede regular de ensino, para educandos portadores de necessidade especiais. Para Oliveira (1998, p. 11) Educação Especial significa que as pessoas de necessidades especiais devem receber as mesmas oportunidades que são oferecidas às pessoas consideradas “normais”, buscando sempre o desenvolvimento de suas potencialidades através de meios educacionais adequados. Para esta autora a peça chave do programa educacional é o professor. O professor quando trabalha com alunos cegos e com visão subnormal, independente da mobilidade que atua, deve estimular o aluno a desenvolver ao máximo suas potencialidade, bem como, incluir em seu planejamento experiências que compensem as que faltam à criança por conta de sua deficiência. Segundo Blackhusrst; Berdine (1981, p. 227) o deficiente visual aprende refletindo sobre as experiências vividas, porém essas experiências são poucas, o que compromete seu conhecimento sobre o mundo que vive e atua.

Para Meneguet; Eugênio (1997, p.1) a dificuldade visual não impede o desenvolvimento normal das crianças portadoras de deficiência visual e o que se toma necessária é uma metodologia que supere o obstáculo físico, proporcionando atividades práticas que despertem o seu interesse. Essas atividades práticas podem e devem ser realizadas com material didático tático que auxilie o deficiente visual a ampliar e melhorar as suas imagens mentais do mundo que o cerca. Ressaltando que nenhum material didático substitui completamente a realidade. Sempre que possível o aluno cego deve tatear elementos reais. Veiga da Silva (1983) ressalta que o tato, talvez mais que a visão, permite o conhecimento da realidade. Um exemplo disso é o caso de flores artificiais que não se distinguem das naturais quando vistas com os olhos. Porém, na sua experiência no exercício do tato, nada que era artificial pode transmitir a sensação de natural. Nas flores buscava sempre a maciez e umidade das pétalas, a temperatura e o perfume que não possuem as artificiais. Nos animais, também, buscava a temperatura, a rugosidade, os pelos ou penas, as vibrações dos movimentos. Nesse sentido, considera que nos trabalhos desenvolvidos com crianças cegas na pré-escola, recomenda-se levar sempre as mãos das crianças às coisas naturais, antes de lhes trazer as miniaturas, mesmo em três dimensões.

5 O professor Veiga ficou cego antes de dois anos de idade decorrente de varíola.
Neste sentido, Veiga da Silva (p 31, 1983) ressalta que a pessoa cega não utiliza apenas um sentido, por exemplo o tato, para "visualizar" um objeto. Ao tocar um elemento, seja ele natural ou não, o deficiente visual utilizará também os outros sentidos para (re)conhecer o que está tateando. Isso ocorre também com as pessoas videntes que, ao se depararem com um objeto o analisam com o auxilio do tato, olfato, audição e às vezes do paladar.

Essa análise de um elemento com todos os sentidos é o que Merleau Ponty (1994 p. 299) chama de comunicação entre os sentidos. Para esse autor os sentidos comunicam-se entre si e abrem-se à estrutura dos elementos. Podemos ver a rigidez e a fragilidade do vidro quando ele se quebra com um som cristalino, este som é trazido pelo vidro visível. Vemos a elasticidade e a maleabilidade do aço incandescente, a dureza da lâmina em plaina, a moleza das aparas. A forma dos objetos não é seu contorno geométrico, mas sim, a relação com a própria natureza comunicando-se com todos os sentidos, ao mesmo tempo em que se comunica com a visão.

Seguindo esta linha destaca-se também o ponto de vista de Le Sann (1992, p 43) para a qual o sujeito percebe os elementos do espaço por meio de seus sentidos (visão, tato, olfato e audição) e grava essa percepção através de uma imagem mental. A imagem mental se forma na passagem do real percebido apresentado ao real mental representado. Segundo De La Garanderie apud Le Sann (1992 p.39) existem dois tipos de imagens: as visuais e as auditivas. A pessoa com capacidade para percepção de imagem visual percebe o mundo externo por meio de imagens de objetos ou de figuras. A pessoa considerada auditiva utiliza a "retenção verbal" sob forma de linguagem interna. A formação da imagem mental de um sujeito é função de fatores que lhes são próprios, tais como seus laços afetivos com relação ao objeto real apresentado, sua vivência e sua capacidade de observação. Assim diversos sujeitos frente ao mesmo objeto real apresentado terão imagens mentais distintas. As imagens mentais são ativadas em um sujeito através de estímulos externos e internos. Os estímulos externos podem ser ativados por uma pergunta, um enunciado, um conjunto didático, entre outros. Os estímulos internos são acionados através de uma lembrança, uma associação de idéias, entre outros. Ao tatear um objeto ou quando ouve uma informação o sujeito ativa e seleciona na memória uma imagem mental relacionada à informação recebida, seja ela obtida através de um objeto ou uma informação verbal.

De acordo com Veiga da Silva (1983, p.29-30) o tato não permite a "compreensão global e sintética do todo" que o vidente alcança quase que instantaneamente. O deficiente visual necessita construir passo a passo o conjunto de um ambiente visitado. Nesse sentido o autor destaca que "...só as miniaturas com as três dimensões, com a rugosidade ou a maciez inerentes à coisa miniaturizada, interessam, realmente, à inspeção tâtil do cego".
As miniaturas em três dimensões interessam também às crianças que não necessitam de educação especial, pois são miniaturas de elementos concretos do espaço. Os modelos reduzidos trazem às crianças a materialização de espaços reais que proporcionam o aprendizado de conceitos, muitas vezes, por elas não compreendidos, uma vez que, crianças do primeiro ciclo do Ensino Fundamental ainda apresentam nível de abstração em desenvolvimento, necessitando de visualização para compreendê-los (D’ARCE FILETTI, 2003).

As experiências adquiridas com o trabalho que vem sendo realizados com alunos cegos e com baixa acuidade visual estão demonstrando que o uso de maquetes na sala de aula das escolas é um recurso de baixo custo que estimula ao aprendizado de conceitos relacionados às disciplinas cartográficas e geográficas. O uso do computador para a visualização da tridimensionalidade, além de ser de alto custo, não proporciona aos alunos a possibilidade de tocar, sentir o relevo, podendo apenas visualizá-lo. Quando se tratam de alunos cegos os modelos tridimensionais desenvolvidos nos computadores são inúteis.

III- Material e Métodos

III.a. Material

Para desenvolver a maquete do Lago utilizou-se como material base a Planta da área na escala 1/750. Na construção da maquete empregou-se placas cortiças de 1 mm, passadeira Relix, tecido TNT na cor azul royal, tela industrial, tela sombreamento, chapa plástica para modelagem, cola cascolar instantânea, tecidos com texturas diferentes, tintas tecidos de cores diversa, tinta metálica, tinta dimens relevo, tintas dimens relevo metálica, pincéis, cola colorful, compensado 10mm, feltro, estilete madeira, tesoura e massa de biscuit.

Para a implementação dos circuitos sonoros na maquete adotou-se micro-chaves 075 para o circuito de voz, fios "wire wrap", cabo para impressora, ferro de soldar, pinça, pistola de cola quente, multímetro dig. F.T 830, Kit de solda, bastões de cola quente, formões para entalhador, Programa DOSVOX e Computadores.

III.b. Procedimento Metodológico

A maquete do Lago municipal, escala 1:750, foi desenvolvida através de técnicas tradicionais de elaboração de maquetes. O que a diferença das maquetes tradicionais são os materiais empregados no desenvolvimento de sua base e a implementação de micro-chaves que conectadas, através de um cabo para impressora, em um computador munido do programa Mapavox possibilita a inserção e disseminação de informações sonoras ao ser manuseada.

16174
Os elementos representados na maquete do Lago são ruas e avenidas, *playground*, coreto, Lago Municipal, Ribeirão das Furnas, jardins, quiosques, restaurante do Lago, edifício residencial, antigo zoológico municipal, banheiro público, entre outros.

Para construir a Maquete do Lago, primeiramente, decalçou-se em papel vegetal os elementos representados no mapa base. Depois, transferiu-se esta área para 5 (cinco) placas de cortiça de 1mm. Recortou-se as cortiças nas áreas que representavam o rio e o lago. Em uma base de cortiça de 2mm forrada com tecido TNT azul royal, foi colada a primeira placa de cortiça com a representação do Rio e do Lago. Depois, retirou-se da segunda placa 1,5 mm em volta da área do Lago e 1mm da área do Rio e, colou-a em cima da primeira placa. Retirou-se da terceira placa de cortiça 3mm da área do Lago e 2mm da área do Rio e, colou-a em cima da segunda placa de cortiça. Retirou-se da quarta cortiça 4,5 mm em volta da área do lago e 3mm da área do rio, colou-a sobre a terceira cortiça. Retirou-se da quinta cortiça 6mm em volta da área do Lago e 4mm da área do Rio e, colou-a em cima da quarta placa de cortiça. Esse procedimento permitiu representar parte da profundidade do lago e do rio.

As ruas de paralelepípedo foram representadas por tapete de borracha. Decalçou-se, com auxílio de um carbono, no tapete de borracha a área do Lago e do Rio representada no mapa, recortou-se a representação do Lago e do Rio e colou o tapete em cima da quinta placa cortiça.

Em uma placa de cortiça de 1mm forrada com passadeira Relix foi transferido as representações dos terrenos residenciais e comerciais. Recortou-se essas representações e colou-as em cima do tapete de borracha, respeitando suas devidas localizações. Para representar as gramas dos jardins, do entorno do lago e do rio utilizou-se feltro na cor verde. Construiu-se as representações das construções comerciais e residenciais com massa de *biscuit*.

As micro-chaves foram implementadas na maquete pela equipes da Unesp e UFRJ, no Núcleo de Computação Eletrônica –UFRJ – sob a coordenação do professor José Antônio do Santos Borges.

Com o auxílio de formões e estiletes, perfurou-se a base da maquete nos pontos demarcados para a implementação das micro-chaves. Depois, soldou-se 24 micro-chaves em um cabo para impressora e colocou-as nos orifícios abertos na base da maquete. Esses ofícios foram fechados com cola quente, fixando assim, as micro-chaves. A fixação das micro-chaves com cola quente, possibilita que elas sejam trocadas, sem danificar o conjunto.
III.c. O Programa Mapavox

Para que as maquetes emitem informações sonoras sobre a área tocada, pesquisadores do Núcleo de Computação Eletrônica (NCE) da Universidade Federal do Rio de Janeiro (UFRJ), liderados pelo Prof. José Antônio dos Santos Borges e sua equipe desenvolveram o programa MAPAVOX. Trata-se de um programa compatível com o Windows 95 ou superior que possibilita a integração de maquete tático ao sistema de síntese de voz – DOSVOX⁶, permitindo assim, a emissão de sons, textos e imagens pré-programados e a criação e edição de novos textos.

Ao instalar o programa setupmapavox.exe. aparece na tela do computador um atalho e ao se acionar esse atalho, abre-se a janela de abertura. Essa janela possui uma foto da Maquete do Lago Municipal e botões que permitem acesso às funções desenvolvidas no programa. Os botões e as funções disponibilizados no software Mapavox estão descritos sucintamente no quadro I.

Deve-se ressaltar que a quantidade máxima de circuitos sonoros em cada maquete é de 32 micro-chaves. Para programar as informações que deverão ser emitidas, ao acionar cada micro-chave é fundamental saber o número que o programa atribuiu a cada uma. Esse número varia entre 1 a 32 e no botão testar sensores é possível visualizar essa informação.

O programa permite apresentar na tela do computador uma imagem referente a maquete conectada ao Mapavox. Essa imagem é escolhida pelo usuário e pode ser uma imagem de satélite, uma foto aérea, um croqui, entre outros. Neste sentido, o usuário deverá escolher, scanear e salvar as figuras desejadas em um diretório do PC, depois importá-las para o software MAPAVOX.

As informações sonoras para serem inseridas no programa Mapavox deveram estar salvas em um diretório do PC e na extensão wav. Essas informações podem ser efeitos sonoros da natureza, área urbana, vozes sintetizadas, vozes gravadas pelo usuário entre outros. O programa de gravador do Windows é um recurso barato e de fácil acesso, por isso é uma ferramenta eficiente na gravação e montagem de efeitos sonoros na extensão wav.

Quadro I: Botões e funções disponibilizados no programa Mapavox

<table>
<thead>
<tr>
<th>Nome dos botões</th>
<th>Funções disponibilizadas em cada botão</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botão Autores</td>
<td>Ao teclar sobre esse botão abre-se uma janela com informações sobre os responsáveis pelo projeto.</td>
</tr>
<tr>
<td>Inibe Sensores</td>
<td>Inibi as micro-chaves e permite configurar ou demonstrar o programa sem a necessidade de ter a maquete fisicamente conectada.</td>
</tr>
<tr>
<td></td>
<td>Ao pressionar uma micro-chave na maquete, o quadrado com o número</td>
</tr>
</tbody>
</table>

⁶ O Dosvox é um sintetizador de voz, na língua portuguesa, que permite a leitura de informações exibidas em um monitor.
<table>
<thead>
<tr>
<th>Testar Sensores</th>
<th>referente àquela micro-chave será demarcado. Esse recurso também possibilita verificar se existem algum tipo de mau contato entre os fios e as micro-chaves.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editar mapa</td>
<td>Esse botão permite a inserção de informações de textos, imagens e sons acerca da área circundante à micro-chave selecionada na maquete.</td>
</tr>
<tr>
<td>Dados do Sensor</td>
<td>Na janela Dados deste Sensor são disponibilizados automaticamente pelo programa as localizações dos eixos X e Y de cada sensor. No campo denominado Nome o usuário deverá atribuir a micro-chave um nome e no campo Número do Sensor deverá ser informado o número da micro-chave que estão sendo inserida as informações pelo usuário.</td>
</tr>
<tr>
<td>Novo Arq. De Som</td>
<td>Permite a inserção de sons gravados através do gravador de sons do Windows, adquiridos na internet, de CD, entre outros.</td>
</tr>
<tr>
<td>Botão Nova Voz</td>
<td>Disponibiliza um editor de texto para a edição das informações desejadas. As informações fornecidas através de edição de texto serão emitidas por uma voz sintetizada.</td>
</tr>
<tr>
<td>Botão Executa</td>
<td>O usuário poderá avaliar as informações armazenadas para cada micro-chave ao clicar em no botão execute.</td>
</tr>
<tr>
<td>Botão Remove Sons/Vozes</td>
<td>Com esse botão o usuário poderá excluir sons.</td>
</tr>
<tr>
<td>Botão Remover Sensores</td>
<td>Esse botão serve para remover sensores colocados no mapa de edição.</td>
</tr>
<tr>
<td>Botão Exibir Mapa</td>
<td>Nesse botão o usuário seleciona a figura referente a maquete conectada ao programa MAPAVOX.</td>
</tr>
</tbody>
</table>

 Embora não seja necessário em geral, por vezes torna-se prático editar um arquivo .mvox manualmente. Neste sentido, todos os diretórios das informações gravadas para as maquetes, bem como, os números e as localizações dos eixos x e y das micro-chaves no conjunto são armazenadas em páginas do Bloco de Notas do Windows, formando um banco de dados. O usuário pode utilizar esse banco de dados para acrescentar, remover ou neutralizar informações. Para acrescentar informações a um sensor basta digitar o diretório na qual a informação foi salva (exemplo: C:\Meus documentos\cartografia tati\proyecto DOSVOX\sons\carros.wav). Para remover informações deve-se deletar o diretório digitado referente ao que se deseja excluir. Para neutralizar informações que poderão ser utilizadas depois, deve-se digitar um símbolo (uma letra, um número, entre outros) na frente do diretório desejado, por exemplo #C:\Meus documentos\cartografia tati\proyecto DOSVOX\sons\carros.wav. Para acionar novamente a informação neutralizada, deleta-se o símbolo.

 No programa Mapavox encontra-se, também, um pequeno manual de instruções para instalação do programa e das funções desenvolvidas por cada botão.

III.d. Avaliação da Qualidade da Maquete do Lago Municipal

A fim de se obter uma avaliação da maquete e dos dispositivos sonoros por parte do grupo de alunos que participaram das pesquisas, preparou-se dois questionários que foram preenchidos pela equipe durante a aplicação das aulas práticas com o grupo de alunos. O primeiro questionário foi elaborado para avaliar o desempenho dos alunos na exploração da
maquete sem a utilização dos recursos sonoros. O segundo para avaliar o desempenho dos alunos na exploração da maquete com os recursos sonoros. Elaborou-se questões fechadas, organizadas de forma a gerar tabelas que indicavam a avaliação dos alunos quanto às características como textura, cor, equilíbrio entre o número dos objetos representados, fidelidade da realidade representada, quantidade de objetos reconhecidos pelos alunos no conjunto e quais elementos faltaram representar no maquete. Para avaliar estes critérios a equipe elegeu 21 elementos que foram elencados nos questionários.

A aplicação das atividades com a maquete foram divididas em duas etapas e aplicada individualmente. Primeiramente, cada aluno manipulou a maquete sem os recursos sonoros e sem receber nenhuma informação sobre a área representada. Durante essa etapa, anotou-se no questionário a avaliação de cada aluno em termos dos aspectos descritos no questionário, conforme comentado anteriormente. Os alunos com baixa visão avaliaram também a harmonia e a funcionalidade das cores utilizadas na maquete.

Na segunda etapa explicou-se aos alunos os recursos sonoros disponibilizados na maquete e depois, cada aluno pode explorá-los livremente, através da manipulação do conjunto. Durante a realização das atividades a equipe foi anotando as respostas dos alunos sobre os elementos mais significativos, quais objetos conseguiram identificar e quais os elementos faltaram na maquete. Registrou-se também, através da observação o interesse demonstrado por cada educando ao explorar a maquete, sem e com os recursos sonoros e o tempo de manipulação do conjunto por cada aluno.

Como complemento das aulas práticas realizou-se um trabalho de campo com os alunos na área representada. Para Carvalho (1941, p 866-868) a excursão didática deve ser integral, abrangendo o meio físico, biológico, social, histórico e econômico. A excursão didática é uma grande síntese da vida, é um ensinamento de incalculável alcance, quando os educandos são postos em contato com a realidade, de forma orientada. O trabalho de campo possibilita aproximar a escola da vida real, restabelecendo as conexões necessárias e, apesar da complexidade de alguns fenômenos, torná-los mais vivos, mais significativos, mais cheios de ensinamentos. Para esse autor o contato com a realidade (paisagem) determinaria por si só, o início de todo aprendizado. Neste sentido, os alunos foram levados na área representada na maquete para que reconhecessem, ou mesmo conhecessem os elementos representados no conjunto.

No decorrer do trabalho de campo chamou-se a atenção dos alunos para os objetos mais relevantes da paisagem representados na maquete, como por exemplo o zoológico, coreto municipal, lago municipal, parquinho, rio, restaurante, entre outros. Em cada ponto visitado, os alunos eram incentivados a recordar e refletir sobre a representação e os efeitos sonoros daquele ponto na maquete e qual o elemento se localizava mais próximo do ponto
IV- RESULTADOS

A maquete do lago de Araras apresenta cores fortes e textura agradável de manusear e já foram realizados os primeiros testes relativos à qualidade do material utilizado em sua construção, seu desempenho com a integração dos dispositivos de som do programa Mapavox, bem como o desempenho dos alunos na sua exploração (figura 1).

![Figura 1: foto da maquete do Lago Municipal de Araras – SP](image)

O programa Mapavox apresenta uma harmonia visual entre as cores, tamanhos e escritas das janelas do software (Figuras 2, 3 e 4). As funções disponibilizadas no programa são fáceis de operar, o que o torna uma ferramenta importante para professores que desenvolvem trabalhos com alunos deficientes visuais.

O programa funciona perfeitamente no Windows 98, porém apresenta incompatibilidade com o Windows XP. A equipe da UFRJ está pesquisando métodos de ajustamento do Mapavox às configurações do Windows XP, para tornar o software desenvolvido compatível com essa versão do Windows.

![Figura 2: Janela de abertura do programa MAVOX](image)

![Figura 3: Janela com o nome dos autores](image)

![Figura 4: Janela para a introdução de dados sobre os sensores](image)
Os resultados obtidos com a maquete do Lago sem os recursos sonoros demonstraram que a maioria dos alunos não conhece bem a área representada na maquete. Ressaltando que a área escolhida é um ponto importante para os moradores da cidade de Araras-SP- Brasil.

Durante o manuseio do conjunto os alunos cegos e com visão subnormal apresentaram dificuldades em reconhecer os elementos representados. A ausência de uma legenda intensificou essas dificuldades. Alguns objetos comuns em todas as áreas urbanas como, por exemplo, postes de luzes, casas, grama, árvores, ruas e o rio foram identificados, porém os alunos salientaram que não sabia o que cada objeto significava porque não conheciam com detalhe aquele lugar.

É interessante destacar que os alunos participaram da seleção dos locais a serem representados na maquete. Naquele momento imaginava-se que o Lago Municipal, por ser ponto de referência na cidade de Araras-SP e por ser local frequentemente visitado pela população, imaginou-se que os alunos cegos e de visão subnormal o frequentassem e o conhecessem com detalhe. A prática mostrou que não: os alunos demonstraram ter um contato superficial com a área representada e um desconhecimento de alguns dos elementos representados.

Como citado anteriormente desenvolveu-se um questionário com perguntas fechadas para orientar a avaliação dos aspectos da maquete. Os aspectos avaliados nessa fase dos testes corresponderam à textura dos materiais utilizados, fidelidade do real representado na maquete, números de objetos identificados pelos alunos, harmonia entre as cores utilizadas e equilíbrio de informações disponibilizadas no conjunto.

O primeiro item avaliado pelos alunos foi a textura, que recebeu classificação "muito agradável". Por não conhecerem muito bem a área representada na maquete, a maioria dos alunos não puderam opinar sobre o segundo critério de avaliação que correspondia à fidelidade dos elementos representados. Os educandos salientaram que, no entendimento deles, as representações dos postes de luz, árvores, prédios e ruas estavam fiéis à realidade. A textura utilizada no lago e no rio, porém era muito parecida com a textura utilizada para representar a grama. Esse fato dificultava a identificação das áreas que representavam água na maquete.

Os alunos com visão subnormal ressaltaram que as cores utilizadas na maquete eram fortes e bem coloridas, o que auxiliavam na visualização dos objetos.
O desconhecimento dos alunos sobre os elementos que formam a área representada no conjunto dificultaram as análises dos itens: *fidelidade ao real representado na maquete e quantidade de objetos identificados pelos alunos*.

Uma avaliação geral dos aspectos da maquete sem os recursos sonoros demonstrou que o conjunto é resistente, possui coerência entre suas cores e é agradável de manusear. Os resultados obtidos com essa avaliação também apontam que a maquete necessita de alguns ajustes como, por exemplo, a inclusão de legenda e de pesquisa de material para substituir o material utilizado para representar os rios e o lago.

Os resultados obtidos com a maquete conectada ao programa Mapavox demonstraram que os recursos sonoros são ferramentas importantes na transmissão da informação sobre os objetos e as características geográficas do local representado para alunos cegos e com baixa visão. Os efeitos sonoros disponibilizados no conjunto estimularam os educandos a explorarem mais a área representada na maquete.

Sobre o software Mapavox deve-se destacar que esse possibilitou a inserção de uma grande quantidade de informações sem saturar a maquete. A disponibilidade de efeitos sonoros, correspondentes ao local representado, auxiliaram os alunos a explorar o conjunto sem que se cansassem da atividade. Notou-se, porém, que as informações gravadas deveriam ser melhores explicadas em alguns casos, principalmente no que se refere a direção e proximidade (ou não) de objetos vizinhos à micro-chave. Assim, por exemplo, ao acionar uma determinada micro-chave na maquete o aluno recebia a informação que estava tateando o antigo zoológico e que a sua direita estavam localizadas as casinhas de sorvetes americanos. Os alunos não eram informados se a sua direita bem próximo a área tateada ou a sua direita longe da área tateada. Esse fato fazia com que os alunos se perdessem na maquete, pois sempre associavam a direita como um lugar distante, a 20 ou 30 cm do ponto de partida. Essa questão poderia ser resolvida se a informação fosse mais completa, como por exemplo: “a sua direita bem próximo ao antigo zoológico estão localizadas as casinhas de sorvetes americanos”.

Durante os testes (Figuras 5) verificou-se que os alunos cegos não encontraram dificuldades para localizar as micro-chaves na maquete, porém quando essas estavam dentro de objetos muito pequenos como, por exemplo, a fonte luminosa e a ciclovias eles não conseguiam sentir através do tato a micro-chave. No caso desse exemplo específico, apenas um dos alunos cegos conseguiu encontrar as micro-chaves nesses objetos, ressaltando que esse aluno conhece muito bem a área, por isso deduziu que deveria haver micro-chaves nesses objetos.

Os testes com os alunos de visão subnormal (Figura 6) demonstraram que os sensores deveriam possuir cores mais fortes como por exemplo verde limão, *pink*, entre
outras. A cor preta do tecido e do tapete de borracha adotados para representar as ruas e a ciclovia na maquete camuflavam as micro-chaves colocadas nesses objetos. Ressalta-se que apesar da inadequação da cor preta para as micro-chaves, elas apresentavam tamanho adequado, no contexto do conjunto representado, pois micro-chaves maiores desarmonizariam a relação de tamanho entre os elementos da maquete.

Figura 5: Alunos cegos durante as atividades com a maquete do lago conectada ao Mapavox

Figura 6: Alunos com baixa acuidade visual durante as atividades com a maquete do lago conectada ao Mapavox

Estes primeiros testes mostraram também a necessidade de uma legenda. Os efeitos sonoros não supriram a função desse recurso na maquete. A legenda possibilita que os alunos compreendam as formas, tamanhos e texturas adotadas para conceber cada componente da maquete. Uma legenda de objetos poderia situar o aluno com respeito à escala de representação, pois observou-se que a falta da legenda contribuiu para que alguns dos alunos cegos confundissem os objetos da maquete como, por exemplo, a forma reta do telhado de uma jaula com um banco, a forma arredondada do telhado do coreto e seu tamanho, auxiliou os alunos a confundirem-no com quiosque, dentre outros.

A inclusão de efeitos sonoros engraçados como os utilizados no banheiro, efeitos próximos da realidade como cantos de pássaros e rugidos de animais grandes e barulhos de buzinas e motores de carros, contribuíram para que os alunos assimilassem e compreendessem a distribuição espacial dos elementos da área representada, incentivando-
os ainda mais à exploração da maquete como um todo. Uma avaliação geral da maquete, com os recursos sonoros, aponta para a eficiência desse tipo de material didático para a transmissão da informação geográfica. Ao manipular a maquete conectada ao Mapavox o grupo de educandos identificou 84% dos elementos (18 objetos) considerados importantes e selecionados previamente para compor a maquete. Ao comparar esses dados com os obtidos com a manipulação da maquete sem os recursos sonoros, que teve 32% dos elementos identificados, verifica-se que houve um aumento de 52% dos elementos identificados pelo grupo de alunos.

IV.a. (Re)Conhecendo A Realidade

Como complemento das aulas práticas, realizou-se uma excursão didática com o grupo de alunos. Durante a excursão didática realizada na área do Lago Municipal, estabeleceu um roteiro de pontos de visitação, através do qual os alunos foram reconhecendo os elementos representados na maquete, como por exemplo o banheiro público, os quiosques, o coreto, o lago, o rio, o antigo zoológico, entre outros. A figura 7 apresenta alguns momentos da atividade realizada no Lago Municipal com destaque para o Restaurante do Lago, o playground e passarela para pedestres.

Em função das dificuldades de grande parte dos alunos noS reconhecimentos dos objetos que compunham a maquete do Lago Municipal, decidiu-se realizar essa visita buscando oferecer aos alunos a oportunidade de ter contato direto com os objetos representados. Essa iniciativa foi altamente produtiva pois permitiu que dúvidas fossem sanadas no que se refere a alguns aspectos como localização, distância entre objetos, formato de objetos, tipo de pavimentação, dentre outros.

Figura 7: Excursão didática no Lago Municipal e em seus equipamentos de lazer

Por exemplo, ficou muito claro aos alunos a disposição dos elementos que compõem o restaurante como o conjunto de mesas e cadeiras no setor externo, a posição do lago e das dependências internas do restaurante, bem como, o trilhão com sorvetes. Embora alguns alunos tenham visitado esse local no passado nunca exploraram esses elementos da
forma como foram apresentados na maquete. Outro exemplo interessante de esclarecimento alcançado na atividade de campo foi a diferenciação entre o coreto e o quiosque. Os alunos compreenderam a diferença de tamanho entre esses objetos, que embora com formas semelhantes, possuem elementos internos cuja função é bastante diferente.

Esta experiência permitiu a equipe a confirmação de que, muitas vezes, os alunos cegos e alunos com baixa acuidade visual são poucos informados e orientados sobre detalhes dos ambientes que frequentam na sua vida cotidiana. A maquete desenvolvida nessa pesquisa permitiu uma ampliação do conhecimento dos alunos com respeito ao Lago Municipal. Experiências como essas poderiam ser reproduzidas por exemplo, na escola onde tal maquete permitiria a orientação e conhecimento detalhado de diferentes ambientes sendo alvo de exploração por de cegos subornais e videntes.

V - CONSIDERAÇÕES FINAIS

A experiência integrada entre os pesquisadores de duas importantes universidades, Unesp e UFRJ, unidos por objetivos comuns, de gerar um material didático que melhore as condições de aprendizado e inserção dos deficientes visuais na sociedade, tem sido extremamente bem sucedida. Os workshops realizados para o aprimoramento da maquete tátil e do programa Mapavoxx proporcionaram o amadurecimento das Equipes em termos de conteúdo relativo a Cartografia Tátil, Eletrônica e Educação Especial.

A avaliação da qualidade da maquete do Lago sem os recursos sonoros demonstra que ela possui uma harmonia entre as cores, entre o número de objetos representados e uma textura agradável ao toque.

Os testes realizados com o conjunto conectado ao programa Mapavoxx indicaram a eficiência da utilização de efeitos sonoros e de vozes gravadas para a transmissão de conceitos para alunos cegos e com baixa acuidade visual, especialmente os detentores da patologia nistagmo\(^7\). Todos os alunos com visão subnormal que participam dessas pesquisas têm essa doença.

O programa Mapavoxx apresenta facilidade de operação e programação, assim como, baixo custo, tornando-se assim, uma importante ferramenta para os professores que

\(^7\) O termo Nistagmo é usado para descrever os movimentos oculares, rítmicos e repetitivos dos olhos. É um tipo de movimento involuntário dos globos oculares, geralmente de um lado para outro e que dificulta muito o processo de focagem de imagens e objetos pequenos. Os movimentos podem ocorrer de cima para baixo ou até em mesmo em movimentos circulares e podem surgir isolados ou associados a outras doenças (fonte: www.drvisao.com.br/).

16184
desenvolvem trabalho com alunos deficientes visuais.

Durante a realização das aulas práticas constatou-se que o grupo de alunos não conhecia muito do espaço representado no conjunto. Neste sentido, houve dificuldade dos alunos realizarem a interação entre as questões de escala e a realidade representada na maquete. Tomando-se por base experiências anteriores com maquetes para cegos e alunos com baixa acuidade visual, decidiu-se que o uso de legenda em braille e alfabeto convencional ampliado limitaria a quantidade de objetos e informações utilizadas nessa experiência. As 21 micro-chaves permitiram a inclusão de informações sobre inúmeros objetos que as cercavam sem tornar a atividade exploratória da maquete cansativa para os alunos. Esse fato, torna-se importante indicador da viabilidade de multiplicação de maquetes temáticas como essa que estimulam especialmente no aluno de baixa visão maior concentração na atividade, uma vez que esse aluno tende a ser mais dispersivo que o aluno cego.

Por causa do desconhecimento dos educandos sobre a área de estudo o tratamento teve de ser individual. Essa talvez tenha sido a maior dificuldade encontrada na aplicação da aula prática. Imagina-se que no cotidiano de nossas escolas os professores terão dificuldades de dar essa atenção individual ao aluno cego ou subnormal que frequente a escola regular. Já na escola especial isso é possível e pode ser estimulado.

A atividade de campo foi fundamental para complementar o conhecimento adquirido na etapa de exploração da maquete. Conclui-se que maquetes temáticas para esse tipo de clientela deverão sempre que possível, ser acompanhada de trabalhos de campo. Observa-se que o aluno se sente muito mais seguro, integrado e valorizado quanto mais conhecimento tem do objeto que está sendo estudado. Assim essa ferramenta pode contribuir em muito para a inclusão efetiva do aluno deficiente visual na nossa sociedade.

NOTA

À Fundação de Amparo as Pesquisas da Unesp- Fundunesp pelo apoio financeiro concedido para aquisição de materiais. À Fundação de Amparo a Pesquisa do Estado de São Paulo -Fapesp - pela concessão de uma bolsa de Iniciação Científica. A diretora e professores da escola especial pela ajuda e confiança recebidas durante o desenvolvimento das pesquisas. E principalmente ao grupo de alunos pela amizade, confiança, sinceridade e paciência demonstradas durante todo o decorrer das pesquisas.

Nossos agradecimentos.

REFERÊNCIAS

BLACKHURST, E. A; BERDINE, W. H. *An Introduction to Special Education*. Editors University of Kentucky, Lexington, Boston, Toronto, 1981.

16186