Tecnologia computacional na inclusão do deficiente visual na escola

Freitas, M.I.C. De¹, Borges, J.A.S.², Ventorini, S.E.¹, Barbosa, L.C.¹

¹Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP)/Instituto de Geociências e Ciências Exatas (IGCE): Caixa Postal 178, Rio Claro - SP, Brasil, Tel./Fax: 55-19-3524-5663, Email: freitas@rc.unesp.br, serv@rc.unesp.br, leandro_corre@yahoo.com.br
²Universidade Federal do Rio de Janeiro (UFRJ)/Núcleo de Computação Eletrônica (NCE): Caixa Postal 2324, Rio de Janeiro – RJ, Brasil, Tel./Fax: 55-21-2598-3333, Email: antonio2@nce.ufrj.br

O principal objetivo desse artigo é apresentar a aplicabilidade do software MAPAVOX na produção de material didático tático de Geografia e Cartografia, bem como, aprofundar metodologias de construção e utilização de conjuntos didáticos tátteis e sonoros, dentre os quais maquetes, mapas e jogos para serem utilizados por professores em aulas integradas. São apresentados os resultados dos aperfeiçoamentos do programa MAPAVOX, a criação de novo modelo de micro-chave e de caneta acionadora de sons. Apresenta-se ainda o jogo Barco ou Canoa, desenvolvido para o ensino de deficientes visuais e as estratégias de disseminação do projeto entre professores do ensino básico. Os resultados do trabalho apontam para o cumprimento dos objetivos propostos, podendo-se afirmar que a combinação de materiais básicos de cartografia e geografia, com jogos educativos e dispositivos sonoros, permitem a elaboração de material didático que contribui para a aprendizagem de alunos cegos e de baixa visão.

Palavras-chave: tecnologia computacional, deficiente visual, cartografia tática, MAPAVOX, ensino básico.

1. Introdução

Integrar o aluno com necessidades educacionais especiais na Escola é a prioridade das atuais das políticas públicas envolvendo o Ensino Básico no Brasil, de forma a garantir sua plena inclusão nas atividades desenvolvidas em classes regulares. No entanto, Caiado (2006 p.1) apresenta a situação paradoxal na qual esta inserida a pessoa deficiente, que tem direito pleno à educação, de acordo com as atuais reformas educativas, mas ainda se depara, cotidianamente, com a exclusão, que resulta de uma sociedade de desiguais. Para além dos aspectos sociais e políticos, observa-se que, no caso das pessoas cegas, existe um constante conflito entre o processo de inclusão do indivíduo e suas limitações biológicas pois, se por um lado a pessoa cega se sente impulsionada para o convívio social, por outro, sofre as limitações impostas pela deficiência, que restringem a mobilidade e a recepção das informações, que tem como principal sentido a visão, dificultando assim as relações sociais e a efetiva inclusão. (Caiado, 2006 p:40)

Quando se reporta à situação da escola atual, compartilha-se das idéias de Azanha (2006, p.25-26) que encara a educação de qualidade como o atendimento às crescentes demandas sociais e econômicas, nas quais não é mais suficiente que a educação básica minstre conceitos que compõem os currículos escolares, mas esta deve oferecer oportunidade para o desenvolvimento de complexas habilidades intelectuais e propiciar o exercício da cidadania. Neste contexto, observa-se o quanto ainda é incipiente a oferta de material didático e metodologias que garantam ao professor segurança e autonomia na aplicação dos conteúdos relativos às diferentes disciplinas, em especial aquelas a que se refere este trabalho: ciências geográficas e cartográficas para inclusão de alunos cegos ou com baixa visão.

É nesse sentido que se vem desenvolvendo um trabalho de parceria entre pesquisadores da Unesp e UFRJ, que se dedicam a experimentação em laboratórios de Cartografia do CEAPLA/IGCE/UNESP e de Computação do NCE/UFRJ, com o objetivo de elaborar material didático tático com recursos sonoros (Figura 1). Tais estudos tiveram início na Unesp, por volta de 2000, e contam com a participação de pesquisador da UFRJ desde 2004, quando se criou o software MAPAVOX. As experiências relatadas neste trabalho resultam do aprimoramento do MAPAVOX, bem como dos procedimentos metodológicos de elaboração de maquetes, mapas e jogos didáticos sonoros integrados ao software Mapavox, abordando
conteúdos das áreas de Geografia e Cartografia. Todo o material didático elaborado no projeto é adequado para ser aplicado por professores em aulas integradas e/ou convencionais, que recebam ou não, alunos cegos e de baixa visão. Embora a ênfase do projeto seja no Ensino Fundamental, existe ampla possibilidade de adaptação para o Ensino Médio e Universitário, devido às características de adaptabilidade do material didático produzido no projeto de pesquisa.

2. Metodologia

As experiências aqui relatadas referem-se ao desenvolvimento do projeto FAPESP Construindo e Aprimorando Material Didático Tátil e Sonoro visando a Integração de Cegos no Ensino Fundamental (Processo nº 2005/03446-3) desenvolvido no período de 2006 a 2008, dentre as quais se destacam os aprimoramentos do MAPAVOX, a apresentação de um dos jogos tátteis produzidos e os resultados referentes a curso de extensão para professores do ensino fundamental. A Cartografia Tátil é uma área da Cartografia que se dedica ao desenvolvimento metodológico e à produção de material didático para a transmissão de conceitos geográficos e espaciais para alunos cegos e de baixa visão, que busca suprir as necessidades das Escolas no que concerne à inclusão do deficientes visual. O material didático usual corresponde a mapas tátteis e maquetes. Em combinação com este material didático desenvolveu-se o programa computacional MAPAVOX, que tem como base o software DOSVOX, é compatível com o Windows 95 ou superior que possibilita a inserção e emissão de sons em material didático. As informações sonoras inseridas no programa devem ter a extensão wav e podem ser obtidas pelos seguintes meios: gravadas por gravador do Windows com o auxílio de um microfone, retirada de CD ROM e da internet. O trabalho apresentado tem como base os procedimentos metodológicos publicados previamente pela equipe de pesquisadores sobre Cartografia Tátil e Mapavox em FREITAS et al. (2006), FREITAS (2007) e VENTORINI et al. (2006).

2.1. Aperfeiçoamentos no material didático tátil e sonoro

Nova Micro-chave

No material didático produzido pela equipe de pesquisadores da Unesp e UFRJ, os sons em maquetes e jogos são acionados através de pequenos botões (micro-chaves) instalados, que por meio de fios são conectados a uma saída paralela, visando a conexão a um computador (Figura 1).

Usualmente são utilizadas micro-chaves adquiridas em lojas de eletrônica (referência 059 ou 125), que são instaladas no material didático e conectadas ao computador pela porta paralela. Uma das questões que limitam o uso de micro-chave convencional é a necessidade de solda em fio de cobre, ao atestarmos dificuldades dos professores em manipular este instrumento, o que pode causar riscos de acidentes. Neste sentido, estudos foram realizados visando substituição por material de menor risco de manipulação por professores e alunos, surgindo a proposta de nova micro-chave de alumínio, que é inserida nos dispositivos tátteis por dobras feitas manualmente, com a vantagem de não necessitar de solda (Figura 2). O material usado para a construção desta trama é composto de micro-chaves, fio wire wrap, DB25, placa de alumínio flexível, encontrada em papelarias, placas de EVA e estilete. Esta nova micro-chave tornou mais fácil a elaboração dos materiais didáticos tátteis, uma vez que a mesma fica presa a base da trama. A Figura 3 apresenta uma alternativa para elaboração de trama com esse modelo de micro-chave. Deve-se salientar que o processo de solda ainda é necessário, mas somente na conexão dos fios com a entrada paralela, o que pode ser preparado previamente pelo professor, fora da sala de aula. Desta forma, simplifica-se o procedimento de montagem dos dispositivos sonoros no material didático e ampliá-se a possibilidade dos alunos participarem de etapas de construção, sempre com a supervisão do professor.
Figura 3: Exemplo de soldagem de um fio de entrada e de um fio de saída no DB25

"Caneta Sensor"
Tomando como base a primeira micro-chave desenvolvida, uma nova proposta de micro-chave é elaborada: micro-chaves ativadas por um sistema de acionamento denominado de "canetas sensores". Mantendo os fios de saída na base, retiram-se os fios de entrada, conectando a extremidade de cada um destes fios (fios de entrada – vermelho) um Plug "P2 mono", facilmente encontrados em lojas de eletroeletrônicos (Figura 4). Esta micro-chave reduz o número de pontos instalados no conjunto didático para 8 (Fios de saída - azul), todavia permite que cada ponto emita 4 informações sonoras distintas, cada qual acionada por uma caneta. Estes aperfeiçoamentos simplificaram a construção da trama, reduziram a metragem dos fios utilizados, o que dá ao conjunto maior durabilidade, facilidade na manipulação e transporte dos mapas e jogos táticos, e por fim, amplia o hall de possibilidades na elaboração de novos conjuntos didáticos.

Figura 4: Conector e micro-chaves com caneta acionadora

2.2. Jogo Tático “Barco ou Canoa”
Como exemplo de material didático tático, apresenta-se o jogo "Barco ou Canoa" que é um jogo didático, lúdico e interativo de perguntas e respostas com efeitos sonoros, que tem o objetivo de ensinar conceitos geográficos, históricos e ambientais. Toma como base um tabuleiro, com uma linha espiral destacada em baixo relevo, por meio de um sulco recortado em EVA o qual é denominado "leito do rio". Este percurso é formado por um Rio principal com desvios que sempre voltam para o leito principal. Em cada desvio há um sensor com uma pergunta, seguida de duas alternativas de respostas (uma correta e outra incorreta), alusivas ao deslocamento por barco ou canoa. O jogador escolhe a resposta que julga certa e parte para um dos dois caminhos. Assim, passo a passo, o jogador passará por todas as perguntas do tabuleiro até chegar ao centro do espiral (final do jogo) o qual contém um sensor que indicará final de partida.

Figura 5: Demonstração do "Jogo Barco ou Canoa" para professores

2.3. Práticas na Escola
Deve-se destacar que a qualidade do material didático tático é constantemente avaliada através de aulas práticas com alunos com deficiência visual na Escola Especial DA/DV do município de Araras - SP. Atualmente participam da pesquisa 4 cegos, com idade entre 15 e 25 anos, com as seguintes características: 1 cego congênito; 1 com perda gradual de visão; 2 com cegueira adquirida recentes (3 anos) neste caso com memória visual de boa qualidade. No caso dos alunos de baixa visão são 4 jovens entre 12 e 17 anos, com características distintas devido à origem da deficiência visual.

Nas atividades práticas realizadas com o jogo, podem ser formuladas as mais diferentes perguntas, de áreas distintas. No caso específico da prática elaborada, foram formuladas perguntas das áreas de Geografia e História, abordando aspectos da paisagem geográfica. O desafio sempre se inicia com um conceito simples que, com o avanço do jogo vai se aprofundando e se ligando a outros conceitos. Neste caso, por exemplo, questões foram elaboradas para uma aula de geografia, que trata do conceito de "altitude" e o relaciona com a "temperatura" ambiente. Ao participar do jogo, respondendo 10 questões previamente formuladas, o aluno tem oportunidade de refletir e aprender sobre o ponto mais alto da Terra, sobre a composição da atmosfera, sobre o papel do sol na vida do planeta, sobre o porquê do ar se tornar rarerfeito em grandes altitudes, dentre outros aspectos de interesse geográfico, científico e ambiental. Os alunos que participaram da aula não tiveram grandes dificuldades para explorar o jogo tático.
4. Discussão e Considerações Finais

Os resultados do trabalho apontam para o cumprimento dos objetivos propostos, com alguns ajustes e adaptações naturais no processo de produção científica. O programa Mapavox teve funções aperfeiçoadas em termos de sua compatibilidade de instalação em diferentes computadores, sendo seu código reescrito no tocante ao acesso ao hardware da porta paralela responsável pela conexão às micro-chaves. A simplificação do dispositivo de micro-chaves e a experiência didática com o jogo “Barco ou Canoa” apontam para resultados de aplicação bem sucedidos em sala de aula, facilitando a tarefa do professor na reprodução da atividade. Desta forma, diante da experiência vivida neste trabalho, pode-se afirmar que a combinação de materiais básicos de cartografia e geografia como mapas, maquetes com jogos educativos e dispositivos sonoros acionados por software específico, permitem a elaboração de material didático útil e amigável, de interação lúdica, o que contribui significativamente para o processo de ensino-aprendizagem de alunos cegos e de baixa visão.

5. Agradecimentos

Os autores agradecem ao apoio da FAPESP e da FUNDUNESP, permitindo assim que a Cartografia Tátil se consolidasse no IGCE/Unesp.

6. Referências