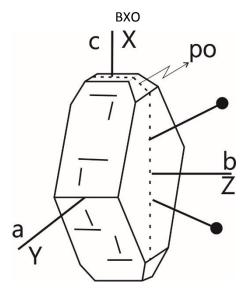
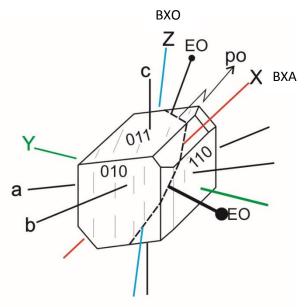

Exercício de Mineralogia Ótica


Exercício 1

-2018-

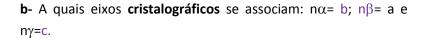
- 1- É dado um conjunto de minerais e seus respectivos índices de refração. Com essas informações identifique o caráter (uni ou bi) e sinal óptico(+ ou -) de cada um deles.
 - a- $n\alpha$ = 1,655; $n\beta$ = 1,658; $n\gamma$ = 1,677: anisotrópico, biaxial +
 - b- $n\alpha$ = 1,629; $n\beta$ = 1,633; $n\gamma$ = 1,639: *anisotrópico biaxial* +
 - c- $n\alpha$ = 1,712; $n\beta$ = 1,720; $n\gamma$ = 1,728: anisotrópico, biaxial sinal indefinido
 - d- $n\alpha$ = 1,493; $n\beta$ = 1,505; $n\gamma$ = 1,517: anisotrópico biaxial sinal indefinido
 - e- n= 1,545: isotrópico
 - f- $n\varepsilon = 1,700$; $n\omega = 1,705$: anisotrópico, uniaxial –
 - g- n ϵ = 1,509; n ω = 1,491: anisotrópico, uniaxial +
 - h- n ϵ = 1,535; n ω = 1,531: anisotrópico, uniaxial +
- 2- É dado um conjunto índices de refração de minerais hipotéticos. Reconheça e nomeie esses índices para cada mineral, caracterizando seu caráter e respectivo sinal ótico.
 - a- 1,542; 1556; 1,553: Ex. $n\alpha = 1,542$; $n\beta = 1,553$ e $n\gamma = 1,556$, biaxial -
 - b- 1,766; 1,760, 1,758: $n\alpha$ = 1,758; $n\beta$ = 1,760 e $n\gamma$ = 1,766, biaxial+
 - c- 1,658; 1,677, 1,655: $n\alpha$ = 1,655; $n\beta$ = 1,658 e $n\gamma$ = 1,677, biaxial +
 - d- 1,633; 1,629; 1,639: $n\alpha$ = 1,629; $n\beta$ = 1,633 e $n\gamma$ = 1,639, biaxial +
 - e- 1,544; 1,545: $n\varepsilon$ = 1,545; $n\omega$ = 1,544 (sinal +)
 - f- 1,544; 1,545: $n\varepsilon$ = 1,544; $n\omega$ = 1,545 (sinal -)
- 3- Para cada um dos modelos óticos determine o sistema cristalino que eles pertencem, seu caráter e sinal ótico. Localize no desenho a posição das bissetrizes aguda (BXA) e obtusa (BXO), eixos e plano ótico (EO e PO respectivamente).

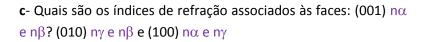
 $n\alpha$ = 1,530; $n\beta$ = 1,553; $n\gamma$ = 1,556: monoclínico, anisotrópico, biaxial -

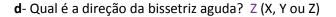


 $n\alpha$ = 1,665; $n\beta$ = 1,674; $n\gamma$ = 1,684: ortorrômbico, anisotrópico, biaxial +

Qual direção da indicatriz é perdendicular ao Plano Óptico (po)? Y (X, Y ou Z)

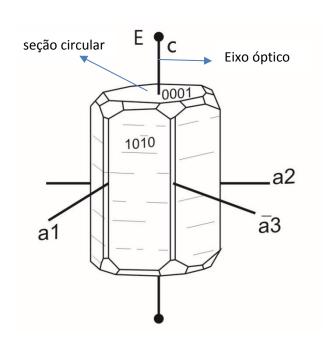

Quais direções da indicatriz estão associadas ao plano óptico (po)? Z e X (X, Y ou Z)


BXA



 $n\alpha$ = 1,676; $n\beta$ = 1,684; $n\gamma$ = 1,685: triclínico, anisotrópico, biaxial -

- 4- Os índices de refração do mineral do modelo ótico cristalográfico abaixo são: $n\alpha = 1,571; \ n\beta = 1,576; \ n\gamma = 1,614. \ EO = eixo ótico, po = plano ótico. X, Y e Z são direções da indicatriz e a, b e c, eixos cristalográficos. Pergunta-se:$
 - **a-** A quais direções da **indicatriz** se associam: $n\alpha$ = X; $n\beta$ = Y e $n\gamma$ =Z.


e- Qual é a direção da bissetriz obtusa? X (X, Y ou Z)

g- Qual é o índice cristalográfico do plano ótico? (100)

h- Qual seu caráter óptico? anisotrópico, biaxial

i- Qual é seu sinal ótico? positivo

j- A que sistema cristalino ele pertence?_ortorrômbico.

101

b

p.o.

- 5- O mineral anexo possui os seguintes índices de refração: $n\epsilon$ = 1,564; $n\beta$ = 1,568.
- a-Quais são o caráter e o sinal óptico do minera? Anisotrópico uniaxial –
- b- Quais são os índices de refração esperados para as faces (0001) $n\omega$ e (10 $\overline{10}$) $n\varepsilon$ e $n\omega$.
- b- Onde estão localizados o eixo ótico e a seção circular? Represente no desenho.
- c- Qual é o índice da face correspondente à seção circular? (0001)