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We study the one-dimensional logistic map with control parameter perturbed by a small peri-
odic function. In the pure constant case, scaling arguments are used to obtain the exponents
related to the relaxation of the trajectories at the exchange of stability, period-doubling and
tangent bifurcations. In particular, we evaluate the exponent z which describes the divergence
of the relaxation time τ near a bifurcation by the relation τ ∼ |R−Rc|−z. Here, R is the
control parameter and Rc is its value at the bifurcation. In the time-dependent case new at-
tractors may appear leading to a different bifurcation diagram. Beside these new attractors,
complex attractors also arise and are responsible for transients in many trajectories. We ob-
tain, numerically, the exponents that characterize these transients and the relaxation of the
trajectories.
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1. Introduction

The one-dimensional logistic map has been stud-
ied extensively [May, 1976; Crutchfield & Farmer,
1982; Grebogi et al., 1982; Cavalcante & Leite,
2000], chiefly because it describes the typical be-
havior of many dissipative dynamical systems mod-
eled by nonlinear differential equations. It also has
many applications in physics, biology, electronics
and other fields.

Particular attention has been paid to the qual-
itative change of the asymptotic behavior of the
trajectories as the control parameter is changed.
It is well known that the logistic map exhibits
cascades of period-doubling bifurcations leading
to chaos [Feigenbaum, 1978; Collet & Eckmann,

1980], tangent bifurcations giving rise to periodic
windows (also called subductions [Grebogi & Ott,
1983]), intermittent behavior [Hirsch et al., 1982],
and crisis events (boundary, interior and merging
chaotic bands crisis [Grebogi et al., 1982; Grebogi
& Ott, 1983]). The period-doubling cascades in
one-dimensional maps have universal scaling laws
[Feigenbaum, 1978; Collet & Eckmann, 1980] both
in parameter and phase space. Scaling laws also
characterize the intermittent behavior at tangent
bifurcations.

Our main goal in this paper is to investi-
gate the effect of a small periodic perturbation
of the control parameter of the logistic map (also
called parametric perturbation [Rossler et al., 1989;
Saratchandran et al., 1996]), on the scaling laws
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and exponents related to relaxation and transient
phenomena.

The logistic map considered in this work is
defined by

Xn+1 = F (Xn) = RnXn(1−Xn) (1)

Rn = R+ εf(n) (2)

where ε is small and f(n) is a periodic function. For
ε = 0, the static case, we develop a scaling theory
to obtain the exponent z of the relaxation time, for
trajectories in the vicinity of the exchange of sta-
bility and period-doubling bifurcations. For ε 6= 0,
called the time-dependent case, the effective control
parameter is periodic. In this case, we obtain the
fixed points and study their stability. Typically, as
the control parameter R varies, we find that a new
attractor arises at a critical value denoted as Rc.
When R < Rc, the new attractor is still complex
and is responsible for transients in many trajecto-
ries. We obtain numerically the exponent z which
characterizes this transient. This paper is organized
as follows: In Sec. 2, we discuss the behavior of the
logistic map with constant control parameter, and
use scaling arguments to obtain the exponents z and
β characterizing the exchange of stability, tangent
and period-doubling bifurcations. Section 3 treats
the case of a periodic control parameter. We suc-
ceed in obtaining the fixed points and their stability.
In addition, we describe the mechanism of the cre-
ation of the new attractor, the observed transient
time, and we obtain the exponents z and β. Our
conclusions are presented in the final section.

2. Constant Control Parameter

Let us consider the logistic map defined by Eq. (1)
with Rn = R (ε = 0). We are interested in
the behavior of a typical dynamical quantity near
a bifurcation. In particular, we shall investigate
the variable defined by Y = Fn(X) − X∗, for
the exchange of stability bifurcation, or by Y =
Fn(Fm(X))−X∗, for the period-doubling bifurca-
tions (m = 2, 4 . . .). In each case X∗ stands for the
asymptotic value of Fm(Xn) (stable fixed point or
periodic orbit) as n → ∞ and at the bifurcation
(R = Rc). Then Y will carry information of the
approach or deviation from this typical value from
both the dynamical and parametric points of view.
Y , like any dynamical quantity, is a function of the
number of iterations n (which, near a bifurcation,

can be considered as a continuous variable) and of
µ = |R − Rc|. The dynamic scaling hypothesis
[Hohenberg & Halperin, 1977] asserts that it should
be a generalized homogeneous function:

Y (n, µ) = lY (lan, lbµ) , (3)

where l is a scaling factor. For µ = 0, this implies
that Y has an algebraic decay

Y (n, 0) ∼ n−β ,

with β = 1/a. Figure 1 displays the numerical it-
eration of Eq. (1) for R = 3 (and ε = 0), where
the first period-doubling bifurcation occurs. Ob-
serve the decay of Fn(X) to X∗ = 2/3 (the value
of the fixed point) as a function of n. The upper
curve is fitted with Y = F 2(X) − 2/3; the best
fit gives β = 0.493(3). When the lower curve is
considered, the same value for β is obtained within
uncertainty. For µ 6= 0, the dynamical quantity has
a decay characterized by a relaxation time τ . Near
the bifurcation we expect that

τ ∼ µ−z .

Using the scaling relation [Eq. (3)] we find that
Y (n, µ) goes as n1/a times a function of n/µa/b,
and so it follows that z = −a/b. The exponent z is
called the dynamical critical exponent in the termi-
nology of phase transitions [Hohenberg & Halperin,
1977]. In Fig. 2 we show how the relaxation time
depends on µ for the exchange of stability bifurca-
tion (at Rc = 1, when the fixed point X = 0 be-
comes unstable and so X∗ = 0). The best fit gives
z = 0.9991(1).

Finally we consider Eq. (3) in the limit n→∞
in order to describe the divergence of dynamical
quantities when approaching bifurcations in the or-
bit diagram. It is easy to obtain

Y (∞, µ) ∼ µ−1/b .

Exponents a and b can be evaluated by standard
renormalization group techniques. This method
was applied to one-dimensional maps in order to
describe the cascade of period-doubling bifurcation
leading to the chaotic regime [Feigenbaum, 1978;
Collet & Eckmann, 1980]. The method was later
extended to describe intermittency [Hirsch et al.,
1982]. In this section, we apply the ideas used to
characterize intermittency to describe relaxation at
tangent bifurcations.
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Fig. 1. Position X versus iteration number n for constant control parameter R = 3 and initial condition X0 = 1/2. Each
iteration alternates between the upper and lower curves while approaching the fixed point X∗ = 2/3. Both curves decay as
n−β . A least squares fit furnishes β = 0.493(3).
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Fig. 2. Relaxation time versus µ for the exchange of stability bifurcation (Rc = 1) in the constant control parameter case.
Here µ = Rc −R. We obtain z = 0.9991(1).

A tangent bifurcation occurs when the graph
of the map intercepts the diagonal. When we are
close to a tangent bifurcation, a channel between
the graph of the map and the diagonal appears. If

an orbit of the system enters such a channel it can
spend a long time before leaving it; this time is
identified as the relaxation time. The renormal-
ization group approach states that near a tangent
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bifurcation, the logistic map behaves as universal
function, g(Y, µ), which obeys the scaling relation

g(Y, µ) = αg

(
g

(
Y

α
,
µ

δ

)
,
µ

δ

)
. (4)

The coefficients α and δ can be related to a and
b by comparing the scaling relation above Eq. (3).
α is identified as a natural scaling factor and thus
l ≈ α. It follows that lb ≈ 1/δ. Since the time
scales n and n′ defined by g and g(2) are related
by n′ = 2n, it also follows that lan ≈ 2n. So we
have a = ln(2)/ ln(α) and b = − ln(δ)/ ln(α), im-
plying that the exponents z and β are related to
the renormalization group exponents by

z =
ln 2

ln δ
,

β =
ln α

ln 2
.

Assuming that g(Y, µ) has a power series ex-
pansion, we shall find α and δ by solving Eq. (4)
recursively for each order of powers of Y and µ.
The conditions g(0, 0) = 0 and (∂g/∂y)(0, 0) = 1
are appropriate for the tangent, exchange of stabil-
ity and period-doubling bifurcation cases. Up to
order 3, g(Y, µ) can be written as

g(Y, µ) = Y +
3∑
j=2

cj0Y
j +

3∑
k=1

c0kµ
k

+
j+k≤3∑
j=1,k=1

cjkY
jµk .

Returning to the expansion in Eq. (4), we can
obtain α and δ by considering terms in Y , µ, and in
the product µY . By considering terms in Y alone,
namely,

Y +c20Y
2+c30Y

3 = Y +
2c20

α
Y 2+

2

α2
(c30+c220)Y

3 ,

we can determine α. If c20 6= 0 then α = 2. This
situation is found in the tangent and exchange of
stability bifurcation cases. If c20 = 0 and c30 6= 0,
we have α =

√
2. This corresponds to a period-

doubling bifurcation. In fact, this series can be
summed in all order in Y [Hirsch et al., 1982], yield-
ing a function depending only on a single free con-
stant parameter (c20 or c30).

Concerning the terms in µ only, we have that

3∑
j=1

c0jµ
j =

2αc01

δ
µ+

α

δ2
(2c02 + c01c11 + c20c

2
01)µ

2

+
α

δ3
(2c03 + c11c02 + c12c01

+ 2c20c01c02 + c21c
2
01 + c30c

3
01)µ

3 .

When c01 6= 0, it follows that δ = 2α. If c01 = 0
and c02 6= 0 we have δ =

√
2α and so on. However,

in order to determine δ, we must consider simulta-
neously the series with the cross terms, namely

c11Y µ+c12Y µ
2+c21Y

2µ

=
2

δ
(c11+c20c01)Y µ+

2

δ2

(
c12+c211+c20c02

+ c20c01c11+c21c01+
3

2
c03c

2
01

)
Y µ2

+
2

δα

(
c21+

3

2
c20c11+

3

2
c30c01+c220c01

)
Y 2µ ,

and check for consistency.
Since c20 and c01 are different from zero at tan-

gent bifurcations, we obtain α = 2 and δ = 4. This
implies that β = 1 and z = 1/2. In the exchange
of stability bifurcation, which occurs for Rc = 1
and X∗ = 0 in the logistic map, we have no terms
with µ alone. The exponents and the coefficients
are determined by c20 6= 0 and c11 6= 0. In this
case, we have that α = 2 and δ = 2, implying that
β = 1 and z = 1. The period-doubling bifurcation
is characterized by c20 = 0 and c30 6= 0. Moreover,
the coefficients c0j are all zero and c11 6= 0. Thus

we have α =
√

2 and δ = 2, implying β = 1/2 and
z = 1.

Considering terms up to third order in Y and
µ, we see that we can have only two values for the
exponent β, namely 1 or 1/2. On the other hand,
several values of z are possible: they are z = 1/2,
2/3, 1, 3/4 and 2.

It is worth mentioning that the results obtained
above hold for all one-dimensional maps in the
same universality class and are not restricted to the
logistic map.

3. Periodic Control Parameter

Let us consider now the logistic map with a control
parameter of period 2. This problem can be mod-
eled by Eqs. (1) and (2) with fn = f(n) = cos(nπ).
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Since Rn oscillates between two values, R(1 + ε)
and R(1 − ε), the fixed points are also periodic
in time (n). This means that fn(Xa) = Xb and
fn+1(Xb) = Xa. We prefer to call this situation
a time dependent, in fact a periodic, fixed point
rather than a two-cycle, as almost all initial condi-
tions will asymptotically oscillate between Xa and
Xb. So we have a time-dependent fixed point.
To clarify the difference between a periodic fixed
point and a two-cycle, suppose that Rn = R and
we are given many different initial conditions. If
the system evolves to two-cycle (Xa, Xb), each Xi

(i = a, b) has its own basin of attraction. Thus
at any given n some initial conditions will be close
to Xa and almost all the other will be close to Xb.
At iteration n + 1 they exchange values. On the
other hand, when the control parameter has period
two, almost all initial conditions have the asymp-
totic value Xa for a given n and the value Xb for
n+ 1. Our case is then better described by a time-
dependent fixed point of period two.

The fixed points are obtained by solving the
equation X∗n+2 = X∗n where iteration is defined by
Eqs. (1) and (2). This can be easily accomplished
using a symbolic programming tool such as Maple.
We find three nonzero solutions for n even (odd). At
least one of them is real and corresponds to a fixed
point X∗1 = (Xa, Xb). If we fix ε and increase R,

this fixed point becomes unstable and a two-cycle
(of period two) becomes stable. So, as R is var-
ied we have the usual sequence of period doublings,
until chaotic behavior is reached.

The other two roots of the fixed point equa-
tion change from complex to real upon increasing
R. The value of the control parameter where com-
plex fixed points become real is called Rc. One of
these new fixed points is unstable and the other is
stable. This new stable fixed point X∗2 coexists with
the original real fixed point or with one of its stable
descendent m-cycle. It has its own basin of attrac-
tion. In fact, some of the initial conditions belong to
the basin of attraction of X∗2, while others belong to
the basin of the stable m-cycle (m = 1, 2, 3, 4 . . .),
which appears in the sequence of bifurcations origi-
nated from X∗1. The new fixed point, X∗2, gives rise
to a second sequence of bifurcations as R is varied.

The picture described above depends on ε. For
example, for ε = 0.01 we have Rc ∼ 3.144390069.
For R < Rc we have only a fixed point of period
two, X∗1, that attracts almost all initial conditions.
When R > Rc we have two stable fixed points of pe-
riod two, X∗1 and X∗2, each one with its own basin
of attraction. The sudden birth of a new basin of
attraction can be seen in the orbit diagram as a dis-
continuity. In Fig. 3 we show the orbit diagram for
this value of ε and two different initial conditions:
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Fig. 3. Orbit diagram for periodic control parameter Rn = R(1 + ε cos(nπ)) with ε = 0.01. (a) The initial condition is
X0 = 1/2. For R < Rc = 3.1443900 . . . , X0 is attracted by the real periodic fixed point; for R = Rc, we have a new real
periodic fixed point responsible for a second basin of attraction. The discontinuity at Rc is due to the fact that X0 is now
attracted to the new fixed point. (b) The initial condition is X0 = 0.2.
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Fig. 4. The control parameter is given by Rn = R(1 + ε cos(nπ)) with ε = 0.01. (a) Orbit of X0 = 1/2 when R < Rc =
3.1443900 . . . . In this situation the new attractor is complex and responsible for a transient. The orbit spends a long time
near the real part of the complex attractor (n < 6450) before reaching the real periodic fixed point. The arrow shows the
transition defining the transient time. (b) Plot of transient time versus µ. A least squares fitting furnishes z = 0.501(1).

(a) X0 = 0.5 and (b) X0 = 0.2. The discontinu-
ity at Rc in Fig. 3(a) means that X0 = 0.5 has
changed its basin of attraction. This does not oc-
cur for X0 = 0.2 [see Fig. 3(b)].

This picture describes the mechanism by which
new basins of attraction appear. The transition
from one basin to another one may be characterized
by a transient time. For R < Rc, an initial con-
dition X0 is attracted asymptotically to the fixed
point X∗1, but before reaching this fixed point the
system may spend a long time near the real part of
the (still) complex fixed point X∗2. This time is the
transient time τ . As R approaches Rc, τ grows, and
for R = Rc it diverges, meaning that now the sys-
tem spends all the time in the neighborhood of the
new real fixed point. The divergence of the tran-
sient time near Rc is given by τ ∼ µ−z. Figure 4(a)
shows the evolution starting from X0 = 0.5. Ob-
serve that the transition from one fixed point to
the other is very sharp. It is then easy to evaluate
the transient time. Figure 4(b) shows the transient
time for different values of µ = Rc − R. The expo-
nent z = 0.501(1) was obtained by a least squares
fitting; the quality of the fit is very good.

A similar situation may occur when a complex
fixed point becomes real and stable when a m-cycle
is already stable. This is the case for ε = 0.038.
The fixed point X∗2 becomes real and stable at

R = Rc ∼ 3.372405139. When R < Rc, X∗2 is
complex and a two-cycle of period two attracts all
the initial conditions. The transient time, in which
the system stays close to the real part of X∗2 is char-
acterized by the exponent z = 0.506(2).

For ε = 0.053 and R < Rc ∼ 3.477265810 we
have a chaotic attractor and a transient occurs be-
tween it and the real part of the complex fixed point.
This is shown in Fig. 5(a). The transient times for
several values µ = Rc − R are shown in Fig. 5(b).
A least squares fit furnishes z = 0.502(2).

The transient described above may be com-
pared to intermittency. In intermittent behavior
we have coexistence between an established chaotic
regime and a m-cycle which would be the attractor
for a slight change in the control parameter. There
is a channel between the graph of the map F (m) and
the straight line y = x. As an initial condition is
iterated it can enter this channel and thus have a
cycle-like behavior. When it leaves the channel we
have a so-called burst of chaotic behavior. It turns
out that there is a reinjection mechanism so the sys-
tem enters and leaves the channel frequently. The
characteristic time τ is defined as the average time
of bursts and is characterized by z = 0.5. In our
case, we also have a channel related to a tangent
bifurcation, but there is no reinjection mechanism.
In fact, the system enters the channel only once
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Fig. 5. (a) The orbit of the initial condition X0 = 1/2 for Rn = R(1+ε cos(nπ)) with R < Rc = 3.47726581 . . . and ε = 0.053.
There are a complex periodic fixed point and a real chaotic attractor. A sharp transition marks the transient time. (b) Plot
of the transient time versus µ = R−Rc. A least squares fit gives us z = 0.502(2).

and spends a long time there, which also seems to
be characterized by z = 0.5. Finally it passes to the
chaotic attractor.

Similar situations are observed when the con-
trol parameter Rn has period three. Using, for ex-
ample, Rn = R(1 + ε cos (2/3nπ), we have three
possible values for Rn, namely Ra = R(1 − ε/2),
Rb = R(1−ε/2) and Rc = R(1+ε). In order to ob-
tain the fixed points, we need to solve the equation

X∗n+3 = X∗n ,

which give us seven nonzero roots for each value of
n = 1, 2, 3. For ε = 0.01, for example, one of the
seven roots is at first real and the others are com-
plex. These complex solutions become real in pairs
at specific values of R.

This occurs for the first time when R1 =
3.783544316 . . . , R2 = 3.850718107 . . . and R3 =
3.851414845 . . . . We again observe similar tran-
sients and a similar mechanism of creation of the
new attractor. The exponents z can be obtained
numerically; we have found values close to 0.5 for
all transients.

4. Final Remarks

We studied the logistic map in the case of:
(a) constant control parameter and (b) periodic

control parameter. In the first case we used ar-
guments and techniques of the renormalization
group in order to obtain the dynamical exponents
z and β, which characterize, respectively, the re-
laxation time near a bifurcation and the time de-
cay at the bifurcation. We obtained the following
results: (i) z = 1/2 and β = 1 for tangent bifur-
cations; (ii) z = 1 and β = 1 for period-doubling
bifurcations; (iii) z = 1 and β = 1/2 for the
exchange of stability bifurcation.

In the second case we introduced the concept
of the periodic fixed point, and succeeded in iden-
tifying and analyzing it. We described how a com-
plex solution becomes real at R = Rc, implying the
creation of a new attractor. For R < Rc, we ob-
tained the exponent z related to a transient time.
For Rn = R(1 + ε cos(nπ)) we found that Rc de-
pends on ε. Also, depending on ε, the new attrac-
tor may arise when the old attractor was a peri-
odic fixed point, a periodic m-cycle (m = 2, 4 . . .),
or chaotic. For each situation, the exponent z
was found to be approximately 0.5. The same
results were observed for Rn with period three,
i.e. Rn = R(1 + ε cos(2/3nπ)).
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