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The authors investigated the dynamics of steering and obstacle avoidance, with the aim of predicting
routes through complex scenes. Participants walked in a virtual environment toward a goal (Experiment
1) and around an obstacle (Experiment 2) whose initial angle and distance varied. Goals and obstacles
behave as attractors and repellers of heading, respectively, whose strengths depend on distance. The
observed behavior was modeled as a dynamical system in which angular acceleration is a function of goal
and obstacle angle and distance. By linearly combining terms for goals and obstacles, one could predict
whether participants adopt a route to the left or right of an obstacle to reach a goal (Experiment 3). Route
selection may emerge from on-line steering dynamics, making explicit path planning unnecessary.

How do humans and other animals locomote effortlessly
through a complex environment, steering toward goals, avoiding
obstacles, and adopting particular routes through the cluttered
landscape? This basic problem has inspired a good deal of research
on the optical information available to a moving observer and the
visual perception of self-motion (Gibson, 1958/1998; Land, 1998;
Lee, 1980; Warren, in press). At the same time, research on motor
coordination has demonstrated that the action system generates
stable movement patterns and qualitative transitions that can be
characterized using concepts from nonlinear dynamics (Kelso,
1995; Kugler & Turvey, 1987), including stable gaits and gait
transitions (Collins & Stewart, 1993; Diedrich & Warren, 1995;
Jeka, Kelso, & Kiemel, 1993; Kay & Warren, 2001; Schöner,
Jiang, & Kelso, 1990). To date, however, most research on coor-
dination dynamics has focused on fairly simple tasks such as
stationary rhythmic movement or bimanual coordination. To de-
velop an account of more complex, adaptive behavior that depends
on interactions with the environment, we believe it is necessary to
integrate information-based and dynamical approaches. In the
present article, we attempt such an account of visually controlled
locomotion. Specifically, we derive a dynamical model of steering
and obstacle avoidance from empirical observations of human
walking and use it to predict routes through a simple scene. (For
background on dynamical systems, see Strogatz, 1994; for appli-
cations to behavior, see Kelso, 1995, and Schöner, Dose, & En-
gels, 1995.)

The dynamics of perception and action (Warren, 1998, 2002)
can be described at two levels of analysis. The first level charac-

terizes the interaction between an agent and its environment.
Specifically, the actions of the agent affect its relation to the
environment and make new information available, according to
what Gibson (1979) called laws of ecological optics.Reciprocally,
this information is used to regulate action, according to what
Warren (1988) called laws of control.The problem at this level is
to identify the informational variables that are used to guide
behavior and to formalize the control laws by which they regulate
action. Researchers are just beginning to investigate the informa-
tion and control laws for locomotion (Duchon & Warren, 2002;
Fajen, 2001; Rushton, Harris, Lloyd, & Wann, 1998; Warren, Kay,
Zosh, Duchon, & Sahuc, 2001).

When an agent interacts with a structured environment over
time, observed patterns of behavior emerge. The second level of
analysis characterizes the temporal evolution of this behavior,
which we call the behavioral dynamics.Briefly, goal-directed
behavior can often be described by changes in a few behavioral
variables. Observed behavior corresponds to trajectories in the
state space of behavioral variables, and it may be formally ex-
pressed in terms of solutions to a system of differential equations.
Goals correspond to attractors or regions in state space toward
which trajectories converge. Conversely, states to be avoided
correspond to repellers,regions from which trajectories diverge.
Sudden changes in the number or type of these fixed points are
known as bifurcations,which correspond to qualitative transitions
in behavior. Thus, the problem at the second level of analysis is to
identify a system of differential equations (i.e., a dynamical sys-
tem) whose solutions capture the observed behavior. Here we seek
to do precisely this for the behavioral dynamics of steering and
obstacle avoidance.

These two levels of analysis are linked because the behavioral
outcome at the second level is a consequence of control laws
interacting with the biomechanics of the body and physics of the
environment at the first level. Thus, the nervous system cannot
simply prescribe behavior; it must adopt control laws that give rise
to attractors and repellers in the behavioral dynamics correspond-
ing to the intended behavior. A model of the behavioral dynamics
may allow us to draw some inferences about the form of control
laws, a question to which we return in the General Discussion.
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Toward a Dynamical Model of Steering
and Obstacle Avoidance

Our aim in this article is to apply this dynamical framework to
the basic locomotor behavior of steering toward a goal and avoid-
ing an obstacle. A similar analysis of steering toward targets
(attractors) was performed by Reichardt and Poggio (1976) in the
housefly, although they did not consider the contribution of ob-
stacles (repellers). We are indebted to the approach of Schöner and
Dose (1992; Schöner et al., 1995), who developed a dynamical
control system for mobile robots that demonstrated the role of
repellers in steering control. Here we model observed behavior at
the second level of the behavioral dynamics.1 Our procedure is (a)
to identify a set of behavioral variables for steering and obstacle
avoidance and introduce the general form of the model, (b) to
measure these behavioral variables for human walking, (c) to
develop a fully specified model of the behavioral dynamics, and
(d) to attempt to predict routes in simple scenes by linearly
combining terms for goals and obstacles.

Consider an agent moving in a simple environment at a constant
speed s and a heading direction �, defined with respect to a fixed
exocentric reference axis (see Figure 1A).2 From the agent’s
current position (x, z), a goal lies in the direction �g at a distance
dg, and an obstacle lies in the direction �o at a distance do. To steer
to the goal, the agent must change its direction of locomotion with
a turning rate �̇ until it is heading toward the goal, such that the
heading error � � �g � 0 and �̇ � 0. At the same time, the agent
must turn away from the obstacle, such that � � �o � 0 when �̇ �
0. Because � and �̇ describe the current behavioral state, we adopt
them as behavioral variables.

From the agent’s point of view, the positions of goals and
obstacles can also be represented in egocentric coordinates (Figure
1B). For example, the direction of the goal with respect to the
heading (the goal angle) is equal to � � �g, and the direction of
an obstacle with respect to the heading (the obstacle angle) is
equal to � � �o. These angles are visually available to the agent,
and there is evidence that both the object-relative heading speci-
fied by optic flow and the egocentric direction of a goal with
respect to the locomotor axis contribute to the visual control of
locomotion (Li & Warren, 2002; Rushton et al., 1998; Warren et
al., 2001).

A dynamical model of steering and obstacle avoidance consists
of a system of differential equations with attractors and repellers
that correspond to goals and obstacles. To develop the reader’s
intuition of the formal techniques of dynamics, we begin by
illustrating simple first-order dynamical systems that contain at-
tractors and repellers. We then build on these equations to develop
a higher order system that more closely characterizes the behav-
ioral dynamics of steering and obstacle avoidance in humans.

The simplest description of the steering dynamics is that head-
ing is stabilized in the direction of the goal at �g. Following
Schöner et al. (1995), we can represent this as a first-order system
by a function that specifies the turning rate for each possible value
of heading. For example, the dynamics of steering toward a goal
involve turning toward the goal at �g at a rate that increases as
heading increases away from the goal. This might be expressed as
a linear relationship between goal angle (� � �g) and turning rate
(�̇), represented as a line that intersects the abscissa at � � �g �
0 with a negative slope (see Figure 2A):

�̇ � �kg�� � �g�. (1)

Headings to the right of �g thus yield a negative turning rate (to the
left), and headings to the left of �g yield a positive turning rate (to
the right). Thus, the point � � �g � 0 serves as an attractor, such
that as one turns toward the goal the turning rate goes to zero. The
slope kg determines the goal’s “attractiveness,” that is, the relax-
ation time to the attractor as well as its stability.

1 Schöner et al. (1995) used the term behavioral dynamicsto refer to a
robot control algorithm independent of its physical implementation,
whereas we develop the concept as a description of the observed behavior
of a physical system. In our view, stable behavior is achieved within given
physical and biomechanical constraints, and thus the behavioral dynamics
are a consequence of control laws acting in a physical system.

2 The advantage of a fixed exocentric reference axis is that turning rate
is measured with respect to the world, goals and obstacles can be repre-
sented as specific values of the behavioral variables independent of the
current heading, and steering can be represented by trajectories through the
state space of behavioral variables.

Figure 1. Plan view of an observer moving through an environment
containing a goal and an obstacle. A: The vertical dotted line is a fixed,
exocentric reference line used to define the observer’s direction of loco-
motion (�), the direction of the goal (�g), and the direction of the obstacle
(�o); dg and do correspond to the distance from the observer to the goal and
obstacle, respectively. B: The goal and obstacle angles are defined in an
egocentric reference frame with respect to the observer’s direction of
locomotion.
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Conversely, the dynamics of obstacle avoidance involve turning
away from an obstacle at �o at a decreasing rate. We might
represent this by multiplying obstacle angle (� � �o) by an
exponential function, so that the curve intersects the abscissa at
� � �o � 0 with a positive slope (Figure 2B):

�̇ � ko �� � �o� e�����o�. (2)

Headings to the right of �o yield a positive turning rate (to the
right) that asymptotes to zero as the agent turns away from the
obstacle, and headings to the left of �o yield a negative turning rate
that also asymptotes to zero. The unstable fixed point � � �o �
0 thus functions as a repeller, with its “repulsion” determined
by the slope of the function through that point, specified by
parameter ko.

The dynamics of steering through complex environments might
be captured by linearly combining such functions, one for each
goal and obstacle, such that the net turning rate is determined by
their sum at each value of heading:

�̇ � �kg �� � �g� � ko �� � �o� e�����o�. (3)

This is analogous to Reichardt and Poggio’s (1976) superposition
rule for targets in insect flight control, and it has the advantage that
the complexity of the model scales linearly with the complexity of
the environment. As the agent moves through the world, the angles
of the goal (�g) and obstacles (�o) shift along the � axis. The
location of attractors and repellers determined by the total function

also shifts, influencing the current heading at each point on the
agent’s path.

However, such a first-order description does not capture the fact
that any physical body with inertia cannot make instantaneous
changes in angular velocity. To characterize the dynamics of
observed behavior, one requires at least a second-order system that
maps values of heading (�) and turning rate (�̇) onto angular
acceleration (�̈). An intuitive example of a second-order system is
a mass-spring,

ẍ � �
b

m
ẋ �

k

m
x, (4)

where m is mass, b is the damping coefficient, and k is the stiffness
of the spring. A fixed point in a two-dimensional system is defined
as the position (x) at which both velocity (ẋ) and acceleration (ẍ)
equal zero. Setting ẋ and ẍ equal to zero for the system described
in Equation 4, it is clear that the fixed point is located at (x, ẋ) �
(0, 0). Similarly, a mass-spring system described by the equation

ẍ � �
b

m
ẋ �

k

m
�x � p� (5)

has a fixed point at (x, ẋ) � ( p, 0).
Substituting the angular variables �, �̇, and �g for x, ẋ, and p,

and replacing mass with the moment of inertia I, yields

�̈ � �
b

I
�̇ �

kg

I
�� � �g�. (6)

This system contains an attractor at (�, �̇) � (�g, 0). From here on
we suppress the inertia term I and assume that the b and k
parameters express the ratios of damping and stiffness to the
body’s moment of inertia, so that b has units of 1/s and k has units
of 1/s2. We can add a saddle point creating repulsion away from
(�, �̇) � (�o, 0) as follows:

�̈ � �b�̇ � kg �� � �g� � ko �� � �o� e�����o�. (7)

Steering toward a goal while avoiding an obstacle thus forms a
trajectory through the space of behavioral variables (�, �̇) toward
the goal at (�g, 0) and away from the obstacle at (�o, 0). At any
point, the current heading direction is, in effect, the resultant of all
“spring forces” acting on the agent at that position in the environ-
ment. The agent’s turning rate (�̇) is some function of the current
goal and obstacle angles with respect to the heading direction.
Reciprocally, the motion of the agent to a new (x, z) position in the
environment alters these angles. Locomotion in an environment is
thus a four-dimensional system, because to predict the agent’s
future position we need to know its current position (x, z), heading
(�), and turning rate (�̇), assuming that speed is constant. (Full
model equations appear in the Appendix.)

The actual shape of an observed trajectory for human walking
depends on the manner in which people turn toward goals and
away from obstacles. If angular acceleration (�̈) is influenced by
additional factors such as the distances of goals and obstacles, then
�̈ for a given heading and turning rate also depends on these
variables. We thus designed a series of experiments intended to
measure how the angle and distance to goals and obstacles influ-
ence angular acceleration. These observations were then used to
specify a dynamical model in which the particular forms of goal

Figure 2. Plots of steering and obstacle avoidance terms. A: Steering
term as a function of goal angle. B: Obstacle avoidance term as a function
of obstacle angle.
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and obstacle components were chosen to reflect the empirical
observations. We thus sought to construct a model that captured
the basic characteristics of human steering and obstacle avoidance.

Our aim was to use the model to predict route selection in a
simple scene, when an agent must choose to detour left or right
around an obstacle to reach a goal. Because the model determines
turning from occurrent information about goals and obstacles, the
route emerges from the local steering dynamics, rather than being
planned in advance. This contrasts with a common approach in
robotics, in which a route is explicitly planned on the basis of an
internal world model. Our results demonstrate that it is possible to
account for route selection as a consequence of elementary on-line
behaviors for steering and obstacle avoidance.

General Method

Apparatus

The experiments were conducted in the Virtual Environment Navigation
Laboratory (VENLab) at Brown University. Participants walked freely in
a 12 m � 12 m room while viewing a virtual environment through a
head-mounted display (HMD; Proview 80, Kaiser Electro-optics, Inc.,
Carlsbad, CA). The HMD provided stereoscopic viewing with a 60°
(horizontal) � 40° (vertical) field of view and a resolution of 640 � 480
pixels. A black isolation shield was placed over the HMD, so the surround-
ing field was dark.

The participant’s head position (4 mm root-mean-square error) and
orientation (0.1° root-mean-square error) were measured by a hybrid
inertial–ultrasonic tracking system (IS-900, Intersense, Burlington, MA)
with six degrees of freedom, at a sampling rate of 60 Hz. Displays were
generated on an SGI Onyx 2 Infinite Reality workstation (Silicon Graphics,
Inc., Mountain View, CA) at a frame rate of 60 Hz, using WorldToolKit
software (Sense8, Inc., San Rafael, CA). Head coordinates from the tracker
were used to update the display with a latency of approximately 50 ms
(three frames).

Displays

The virtual environment consisted of a ground plane (50 m2) mapped
with a random noise texture of black and white squares and a black sky (see
Figure 3). Before each trial, two cylindrical red markers appeared on the
ground plane. Participants stood on one marker and faced the other. The
start of a trial was signaled by the marker color changing to green,
whereupon the participant began walking in the direction of the distant
marker. Depending on the experiment, a goal or an obstacle (or both)
subsequently appeared on the ground. Goal posts were blue or green
granite-textured cylinders standing on end, 2.475 m (1.5 eye heights) tall
with a radius of 0.1 m; obstacles were red or blue granite-textured cylin-
ders, 1.98 m (1.2 eye heights) tall, with a radius of 0.1 m. The participant’s
task was to walk to the goal. When the participant reached the goal post,
it disappeared with a “popping” noise and the red markers reappeared on
the ground in their previous locations. Participants walked to the marker in
front of them and turned around to face the other one, in preparation for the
next trial.

Procedure

Prior to the experiment, the lens separation in the HMD was adjusted to
each participant’s interocular distance. To ensure that the participant could
fuse a stereo image pair, a random-dot stereogram of a rectangle was
presented and, if necessary, the lenses were adjusted further until the
rectangle was visible.

Each participant completed approximately two to four practice trials,
until they demonstrated that they understood the task and could walk
comfortably through the virtual environment while wearing the HMD. The
experiment began immediately after the practice trials. Participants were
prompted to take a break and remove the HMD approximately halfway
through the experiment. They were also informed that they could take
breaks between trials or stop entirely if they experienced symptoms of
simulator sickness. Only one participant (in Experiment 3) reported such
symptoms and discontinued the experiment.

Figure 3. Sample frame from virtual environment showing goal post (light cylinder) and obstacle post (dark
cylinder) resting on a textured ground plane.
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Data Analysis

The x- and z-coordinates of head position were recorded by computer on
every other frame (sampling rate of 30 Hz). Both the x and z time series
were filtered using a forward and backward 4th-order lowpass Butterworth
filter with a cutoff frequency of 0.6 Hz, to reduce the effects of gait
oscillations. The filtered position data were used to compute the partici-
pant’s direction of motion (the heading �) in exocentric coordinates in each
frame according to the following equation:

� i � tan�1 � xi � xi�1

zi � zi�1
�, (8)

where xi and zi are the head position coordinates on the ith frame. Turning
rate (�̇) in deg/s was computed by multiplying the difference in motion
direction (�) on adjacent frames by 30, the number of frames recorded per
second. The angle of the goal (�g) and obstacle (�o) with respect to the
reference axis in each frame were computed from the following equations:

�g � tan�1 �Xg � x

Zg � z� (9)

and

�o � tan�1 �Xo � x

Zo � z� , (10)

where X and Z are the goal or obstacle coordinates.
Mean paths in each condition were computed as follows. In each frame,

the value of the x-coordinate was binned in intervals of 0.1 m along the
z-axis. The contents of each bin were then averaged over all trials in a
condition for each participant, to determine the mean x-coordinate for each
z-axis interval. Mean paths in each condition were then averaged over
participants. To normalize across different initial headings, we also com-
puted the goal angle with respect to heading as � � �g and obstacle angle
as � � �o. Mean time series of goal and obstacle angle for each condition
were computed by averaging their values at each time step across all trials
and then across all participants.

Experiment 1: Steering to a Goal

The first experiment was designed to investigate steering toward
a goal, specifically how the turning rate depends on goal angle and
distance. Participants began each trial by walking in a specified
direction. Subsequently, a goal object appeared and participants
simply walked to the goal. In Experiment 1a, we varied the initial
angle of the goal with respect to the direction of heading (� � �g)
while holding initial goal distance (dg) fixed. In Experiment 1b,
initial goal angle was crossed with initial goal distance, to assess
their interaction. The purpose of these experiments was to collect
descriptive data in order to develop a model of the behavioral
dynamics.

Method

Participants. Eight undergraduate and graduate students, 4 women and
4 men who ranged in age from 18 to 28 years, participated in Experiment
1a. Ten other students, 6 women and 4 men who ranged in age from 18 to
36 years, participated in Experiment 1b. None reported any visual or motor
impairment. They were paid $6 for their participation.

Displays. At the beginning of each trial, the participant stood on one
red marker, faced the other, and started walking when the markers turned
green. After traveling 0.5 m, the markers disappeared and participants were
instructed to continue walking and looking in the same direction. After
traveling another 0.5 m, a blue goal post appeared off to one side. In

Experiment 1a, the goal appeared at an angle of �5°, 10°, 15°, 20°, or 25°
to the right (�) or left (�) of the direction of travel, at a distance of 4 m.
In Experiment 1b, the goal appeared at an angle of �10° or 20° and a
distance of 2, 4, or 8 m.

Design. Experiment 1a had a 5 (goal angle) � 2 (left, right) factorial
design with eight trials per condition, for a total of 80 trials. Experiment 1b
had a 2 (goal angle) � 2 (left, right) � 3 (goal distance) design with eight
trials per condition, a total of 96 trials. All variables were within-subject,
and trials were presented in a random order.

Results and Discussion

Experiment 1a. Mean paths for each initial goal angle are
presented in Figure 4A, plotted so that the participant is at location
(0, 0) when the goal post appears. The paths reveal that partici-
pants began turning toward the goal about 0.5 m after it appeared,
and they turned at faster rates with larger initial goal angles. They
completed the turn well before reaching the goal and followed an
approximately linear path for the remainder of the approach. The
mean time series of goal angle (Figure 5A) also illustrates the
influence of initial goal angle on angular acceleration and turning
rate. For larger initial goal angles (y-axis), the curves exhibit

Figure 4. Mean paths to goals. A: At �5°, 10°, 15°, 20°, and 25° in
Experiment 1a. B: At 2, 4, and 8 m in the �20° condition of Experi-
ment 1b.
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steeper slopes, corresponding to greater angular acceleration and
faster turning rates, with the consequence that all curves converge
onto zero at approximately the same time. The small error bars,
corresponding to �1 standard deviation of the mean subject data,
show that behavior was consistent across participants. Although
individuals differed slightly in terms of the rate at which they
turned toward the goal, such differences were minor and can be
captured in terms of small variations in model parameters. Figure
6 presents the goal angle time series for eight trials from one
participant in the 25° condition, illustrating that behavior was quite
consistent from trial to trial for individual participants as well.

For convenience, we plotted mean trajectories for all partici-
pants in the modified state space of goal angle and turning rate
(� � �g, �̇) in Figure 7A.3 Plotting the goal angle rather than the
absolute heading simply puts the goal at the origin, normalizing
trajectories for different initial conditions by aligning them on a
common goal state. Given initial conditions on the x-axis of a
specified goal angle and a zero turning rate, participants rapidly

accelerated to a peak turning rate and then more gradually decel-
erated to a stop at (� � �g, �̇) � (0, 0). Steering to a goal thus
exhibits the expected point attractor dynamics, but with more
complicated trajectories than those of Equation 1. Note that the
height of the peak for each curve increases with initial goal angle,
confirming that participants accelerated more rapidly to higher
turning rates with larger initial angles. The main effect of initial
goal angle on maximum turning rate (maximum �̇) was signifi-
cant, F(4, 28) � 139.74, p 	 .01 (see Table 1). Thus, Experiment
1a revealed that angular acceleration and maximum turning rate
toward a goal increase with goal angle.

We also analyzed walking speed to determine whether partici-
pants changed speed during the trial. Walking speed was fairly
constant during the central portion of the trial, with a similar
pattern exhibited by all participants across all conditions. Walking
speed increased from 0 m/s to a mean of 1.01 m/s (SD � 0.06)
during the first meter of walking, at which point the goal appeared.
Walking speed continued to increase gradually to a mean maxi-
mum of 1.16 m/s (SD � 0.08). It then remained roughly constant
until about a second before the participant reached the goal, at
which point it dropped sharply to 0.11 m/s (SD � 0.01) at contact.
Maximum walking speed decreased very slightly as initial goal
angle increased (1.19, 1.17, 1.16, 1.16, and 1.13 m/s for 5°, 10°,
15°, 20°, and 25°, respectively).

Experiment 1b. Mean paths for each initial goal distance in the
20° goal angle condition are shown in Figure 4B (mean paths in
the 10° condition were qualitatively similar). In all initial goal
distance conditions, participants completed (or nearly completed)
their turn before reaching the goal, and they appeared to turn faster
toward nearer goals. This is confirmed by the mean goal angle time
series (Figure 5B), in which the curves converge onto zero earlier
when the goal is closer, with a concomitant increase in slope.
Figure 7B depicts mean trajectories in state space for the three

3 Note that these are not actually phase portraits of a fixed dynamical
system, because as the observer travels forward through the environment
the angle � continually changes. Thus, the location of the attractor in the
� dimension and hence the dynamical system also evolve over the course
of a trial.

Figure 5. Mean goal angle time series. A: In the �5°, 10°, 15°, 20°, and
25° conditions of Experiment 1a. B: In the 2-, 4-, and 8-m conditions of
Experiment 1b. Error bars in A correspond to �1 standard deviation of the
mean participant data.

Figure 6. Sample goal angle time series for 1 participant in the 25°
condition of Experiment 1a. Solid lines are individual trials and the dotted
line is the mean time series for that participant in the 25° condition.
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initial goal distances in the 20° goal angle condition. A similar
pattern of acceleration and deceleration with point attractor dy-
namics occurs at each distance, with larger peak turning rates for
closer goals. The analysis of maximum turning rate revealed
significant main effects of initial goal angle, F(1, 9) � 303.6, p 	
.01, and initial goal distance, F(2, 18) � 46.01, p 	 .01, as well as
a significant interaction, F(2, 18) � 20.71, p 	 .01 (see Table 1).
The effect of goal distance indicates that participants accelerated
more rapidly toward nearby goals, and the interaction indicates
that this effect is greater at larger goal angles. Thus, Experiment 1b
indicates that angular acceleration and turning rate increase with
initial goal angle but decrease with initial goal distance.

As in Experiment 1a, walking speed was fairly constant during
most of the trial. Walking speed increased from 0 m/s to a mean of
0.98 m/s (SD � 0.9) in the first meter, and then it increased
gradually to a mean maximum of 1.14 m/s (SD � 0.10) before
dropping to 0.10 m/s (SD � 0.01) in the last second before contact.
Maximum walking speed decreased slightly as initial goal angle
increased (1.15 and 1.13 m/s for 10° and 20°, respectively) and
increased with initial goal distance (1.07, 1.18, and 1.19 m/s for 2,
4, and 8 m, respectively). Thus, walking speed was roughly con-

stant throughout the portion of the trial during which participants
were turning. For the sake of simplicity, we ignored these minor
variations in our simulations and assumed that participants main-
tained a constant walking speed.

The purpose of Experiment 1 was to determine how initial goal
angle and distance influence turning toward a goal. The results
demonstrate that angular acceleration increases with goal angle
and decreases with goal distance. These observations are consis-
tent with the task of efficiently steering toward a goal. If angular
acceleration were unaffected by initial goal distance and angle, an
observer might not turn fast enough to hit a nearby goal or to reach
a goal at a large angle, thereby passing to the outside of the goal.
Conversely, the observer might generate unnecessary torque to
accelerate toward a distant goal or one at a small angle. Thus, the
dependence of angular acceleration on goal angle and distance
guarantees effective steering over a wide range of initial
conditions.

Goal component of the model. Based on these results, we
derived a model of the behavioral dynamics of steering toward a
goal. The pattern of acceleration and deceleration evident in the
state space trajectories confirmed that at least a second-order
system was required. Moreover, the dependence of turning rate on
goal distance added another variable. The following model thus
has the form of Equation 6, with angular acceleration �̈ a function
of both goal angle (� � �g) and goal distance (dg):

Table 1
Maximum Turning Rates (�̇) in Experiments 1 and 2

Condition

Maximum turning rate
(deg/s)

M SD

Experiment 1a

Initial goal angle (deg)*
5 9.48 2.30

10 13.11 2.38
15 17.94 2.77
20 22.17 2.98
25 27.12 4.38

Experiment 1b

Initial goal angle (deg)*
10 16.20 3.06
20 25.83 3.69

Initial goal distance (m)*
2 28.35 6.25
4 18.73 2.41
8 15.97 2.37

Experiment 2

Initial obstacle angle (deg)*
1 15.69 4.03
2 15.18 3.10
4 13.17 3.40
8 10.74 3.39

Initial obstacle distance (m)*
3 16.96 3.80
4 12.86 2.94
5 11.27 3.42

* p 	 .001.

Figure 7. Trajectories in the state space of turning rate (�̇) by goal angle
(� � �g). A: At �5°, 10°, 15°, 20°, and 25° in the 4-m condition of
Experiment 1a. B: At 2, 4, and 8 m in the 20° condition of Experiment 1b.
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�̈ � �b�̇ � kg �� � �g��e�c1dg � c2�, (11)

where b, kg, c1, and c2 are parameters. The “damping” term �b�̇
acts as a frictional force that opposes angular motion. Damping is
independent of heading (�) and increases monotonically with
turning rate (�̇). Hence, we assume that it is proportional to turning
rate. The “stiffness” term kg (� � �g) reflects the finding from
Experiment 1a that the angular acceleration toward a goal in-
creases with goal angle. We provisionally assume that this function
is linear (see Figure 2A), at least over the range of angles from
�60° to 60°.4 The “stiffness” parameter kg determines the slope of
the function and hence the attraction of the goal. Finally, the
results of Experiment 1b are captured by the distance term
�e�c1dg � c2), such that acceleration decreases exponentially with
goal distance. This acts to modulate the parameter kg, so that the
slope of Figure 2A, and hence the attraction of the goal, decays
with distance. The constant c1 determines the rate of decay with
distance and has units of 1/m, and c2 scales the minimum accel-
eration so that it never goes to zero, even at large goal distances,
and is dimensionless.

We simulated the model under the conditions tested in Experi-
ment 1b to identify a single set of parameter values that best fit the
mean time series of goal angle, using a least squares procedure.
The best mean fit (r2 � .982) was found with the parameter values
b � 3.25, kg � 7.50, c1 � 0.40, and c2 � 0.40. The simulation
results appear in Figure 8B. Using the same parameter settings, we
simulated the model under the conditions used in Experiment 1a
and obtained a similar mean fit between the simulated and ob-
served goal angle time series of r2 � .979 (see Figure 8A). Note
that the model exhibits the slight overshooting of � � �g � 0 that
is evident in the human data (compare Figures 5 and 8), a sign that
the system is slightly underdamped.

More important, the model exhibited the two basic characteris-
tics displayed by human participants. The state space trajectories
for the model appear in Figure 9A, which depicts turning rate (�̇)
as a function of goal angle under the conditions tested in Experi-
ment 1a. The trajectories show the same rapid acceleration to a
peak turning rate, followed by a more gradual deceleration to a
point attractor at (0, 0), as in the human data (compare Figure 7A).
Moreover, the peak turning rate increases with initial goal angle in
the same manner. The model trajectories for the conditions of
Experiment 1b (see Figure 9B) also display a similar dependence
on initial goal distance as the human data (compare Figure 7B).
Thus, the model produces both a good quantitative and qualitative
fit to the human behavior of steering toward a goal observed in
Experiment 1.

Experiment 2: Avoiding an Obstacle

We designed Experiment 2 to investigate obstacle avoidance,
specifically how turning away from an obstacle is influenced by
obstacle angle and distance. Participants began each trial by walk-
ing in the direction of a goal. Subsequently, an obstacle appeared
near their path, prompting them to detour around it on their way to
the goal. We parametrically varied the initial angle of the obstacle
with respect to the direction of heading (� � �o) and the initial
distance of the obstacle (dg), and we recorded the behavioral
variables. The purpose of the experiment was to collect descriptive
data in order to develop an obstacle component for the model.

Method

Participants. Ten undergraduate and graduate students, 6 women and
4 men who ranged in age from 19 to 32 years, participated in Experiment
2. None reported having any visual or motor impairment. They were paid
$6 for their participation.

Stimuli. As before, participants began walking when the distant marker
turned green. However, in this experiment the green marker served as the
goal and remained visible throughout the trial. After walking 1.0 m, a blue
obstacle appeared slightly to the left or right at an angle of �1°, 2°, 4°, or
8° from the direction of walking and at a distance of 3, 4, or 5 m.
Participants were instructed to walk to the goal while avoiding the obstacle
along the way, and they were told that they could walk to either side of the
obstacle.

4 Note that, because goal angle is a circular variable, the two ends of this
curve must meet at �180°, and thus it is unlikely to be linear over the
whole range. Schöner et al. (1995) approximated it as a sine function,
whereas the empirical “attractiveness function” in the housefly is more
exponential in form, with a nearly linear region over the central 60°
(Reichardt & Poggio, 1976).

Figure 8. Simulated goal angle time series. A: In the �5°, 10°, 15°, 20°,
and 25° conditions of Experiment 1a. B: In the 2-, 4-, and 8-m conditions
of Experiment 1b.
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To encourage detour behavior, a collision with the obstacle was signaled
by a “ping” sound if the distance between the observation point and the
center of the obstacle was less than 0.32 m. This value was determined
from the radius of the obstacle (0.10 m) and the typical distance from the
body midpoint to the shoulder (0.22 m; Warren & Whang, 1987). Partic-
ipants were instructed to continue walking toward the goal if they collided
with the obstacle, but to give the obstacle more room on future trials.

Design. The design for Experiment 2 was thus 4 (obstacle angle) � 2
(left, right) � 3 (obstacle distance), with all variables within-subject. There
were four trials per condition, for a total of 96 trials, presented in a random
order.

Results and Discussion

Effect of initial obstacle angle. Mean paths for the four obsta-
cle angles in the 4 m distance condition appear in Figure 10A; the
pattern at other distances is similar. Participants began turning
away from the obstacle about 0.5 m after it appeared. Just before
passing the obstacle, they began turning back toward the goal. The
mean time series of obstacle angle in the same condition (Figure
11A) show that participants were repelled away from 0°, turning
away from the obstacle such that the angle increases over time.

The slopes of these curves also suggest that the angular accelera-
tion away from the obstacle decreased with initial obstacle angle.

For convenience, we plotted mean trajectories in the state space
of obstacle angle and turning rate (� � �o, �̇), putting the obstacle
at the origin. This normalized the trajectories by aligning different
initial conditions with respect to the repeller. Figure 12A depicts
the state space trajectories for the four initial obstacle angles in the
4 m condition. This reveals repeller dynamics as the turning rate
increases rapidly away from (0, 0) to a peak turning rate, then
decreases again as participants pass the obstacle, and crosses zero
as they begin to turn back in the opposite direction toward the goal.
The peak turning rate decreased as initial obstacle angle increased,
F(3, 27) � 28.187, p 	 .01, confirming that participants turned
away from obstacles faster at smaller initial angles (see Table 1).

Effect of initial obstacle distance. Mean paths for each initial
obstacle distance in the 4° angle condition appear in Figure 10B;
the pattern is similar for the other angle conditions. Notice that the
peak of the detour shifts with the z-position of the obstacle, as
expected, but its amplitude also decreases slightly with obstacle
distance. The time series of obstacle angle for each initial distance
in this condition (Figure 11B) again diverge from 0°, but their
slopes indicate faster turning rates for nearer obstacles. This is
confirmed by the corresponding trajectories in Figure 12B. The
peak turning rate decreased with obstacle distance, F(2, 18) �
80.263, p 	 .01 (see Table 1), indicating that participants turned
away faster from nearer obstacles.

Walking speed was once again roughly constant during the trial,
despite the presence of an obstacle. Mean walking speed increased
from 0 to 1.00 m/s (SD � 0.17) in the first meter of travel, when

Figure 10. Mean paths around obstacles in Experiment 2. A: At �1°,
�2°, �4°, and �8° in the 4-m condition. B: At 3, 4, and 5 m in the �4°
condition.

Figure 9. Simulated state space trajectories. A: At �5°, 10°, 15°, 20°,
and 25° in the 4-m condition of Experiment 1a. B: At 2, 4, and 8 m in the
20° condition of Experiment 1b.
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the obstacle appeared. Mean maximum walking speed was 1.21
m/s (SD � 0.17), which decreased to 0.08 m/s (SD � 0.02) in the
last second before contact with the goal. Initial and final walking
speed were unaffected by initial obstacle angle and distance.
Maximum walking speed was unaffected by initial obstacle angle,
but it increased slightly with initial obstacle distance (1.19, 1.21,
and 1.23 m/s for 3, 4, and 5 m, respectively).

These results demonstrate that initial obstacle angle and distance
influence turning away from an obstacle. The angular acceleration
decreases with obstacle angle—it did not decrease with goal angle
in Experiment 1—but it also decreases with obstacle distance, as
it did with goal distance in Experiment 1. This is again consistent
with efficient obstacle avoidance. If the angular acceleration were
not affected by the obstacle angle and distance, then observers
would risk colliding with nearby obstacles in their path, or they
might generate unnecessary torque to avoid distant obstacles or
those at large angles. Thus, having angular acceleration depend on
obstacle angle and distance ensures effective obstacle avoidance
under a variety of conditions.

We can summarize our findings thus far as follows: Angular
acceleration increases with goal angle and decreases with goal
distance, whereas it decreases with both obstacle angle and obsta-
cle distance.

Obstacle component of the model. On the basis of the results
of Experiment 2, we extended the model by adding an obstacle
component:

�̈ � �b�̇ � kg �� � �g��e�c1dg � c2�

� ko �� � �o��e�c3�� � �o���e�c4do�, (12)

where ko, c3, and c4 are obstacle parameters. First, the obstacle
“stiffness” term ko (� � �o)(e

�c1����o�) reflects the finding that the
angular acceleration away from an obstacle decreases with obsta-
cle angle. We modeled this with an exponential function that rises
sharply from a heading of 0° to a peak close to the obstacle and
then asymptotes to near zero (Figure 2B); the spread of this
function is determined by parameter c3, which has units of 1/rad.
When heading to the right of an obstacle, this induces a positive
acceleration away from the obstacle to the right; when heading to
the left of the obstacle, the reflection of this function induces a
negative acceleration to the left. Second, analogous to the goal
component, the distance term �e�c4do) reflects the finding that the
turning rate away from an obstacle decreases exponentially with
obstacle distance. It acts to modulate the parameter ko, so that the

Figure 12. Trajectories in the state space of turning rate (�̇) by obstacle
angle (� � �o) in Experiment 2. A: At 1°, 2°, 4°, and 8° in the 4-m
condition. B: At 3, 4, and 5 m in the 4° condition.

Figure 11. Mean obstacle angle time series in Experiment 2. A: At 1°, 2°,
4°, and 8° in the 4-m condition. B: At 3, 4, and 5 m in the 4° condition.
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amplitude of the function in Figure 2B, and hence the repulsion of
the obstacle, decays with distance. Parameter c4 determines the
rate of decay with obstacle distance and has units of 1/m; in this
case acceleration is allowed to asymptote to near zero as distance
increases.

Using the parameter settings for b, kg, c1, and c2 from Experi-
ment 1, we simulated the extended model under the conditions of
Experiment 2 to identify the values for ko, c3, and c4 that best fit
the mean obstacle angle time series, using a least-squares proce-
dure. Only the portion of the obstacle angle time series before the
observer passed the obstacle was used to evaluate the fit (i.e.,
before the observer’s z-coordinate became greater than the obsta-
cle’s z-coordinate). The best mean fit (r2 � .975) was found with
values of kg � 198.0, c3 � 6.5, and c4 � 0.8. Simulation results for
the time series of obstacle angle appear in Figure 13, which
illustrates that the model reproduces the effects of obstacle angle
and distance observed in human behavior (compare Figure 11).
Some curves are slightly less bowed, indicating that the model
veers away from nearby obstacles sooner than human participants.
Trajectories for the model demonstrate that the peak turning rate
decreases with initial obstacle angle (Figure 14A) and with initial

obstacle distance (Figure 14B). These trajectories are similar to
those for participants in Figure 12, although the model reaches
somewhat higher peak velocities. Nevertheless, the model success-
fully reproduces both key features of Experiment 2 and provides a
good quantitative fit to the human data.

Experiment 3: Route Selection With One Obstacle

Up to this point, we have only considered steering behavior with
respect to a single goal or obstacle. In natural environments,
however, configurations of objects often require observers to select
a particular route to a goal from among different possible paths
through an array of obstacles. The simplest case involves adopting
one of two possible routes around an obstacle that lies between the
observer’s initial heading direction and the direction of the goal
(see Figure 1). In this case, the observer could take either an
outside (left) or an inside (right) path around the obstacle to reach
the goal. What determines the actual route that the observer
adopts?

A common approach to path planning is model-based control,
which is characterized in robotics by a “sense-model-plan-act”
scheme (Brooks, 1991; Moravec, 1981). Sensory information is
used to construct an internal model of the environment, which
represents the detailed 3-D layout of objects and surfaces in the
scene. An action path is then explicitly planned on the basis of this
model before being executed in the real world. For example, a path
planning process might generate a route by determining the short-
est distance to the goal or by following a minimum energy path
through a landscape of potential “hills” corresponding to the
locations of obstacles (Khatib, 1986).

An alternative approach, which Warren (1998) called information-
based control, was anticipated by Gibson (1958/1998) and has
been promoted in behavior-based robotics (Brooks, 1991; Duchon,
Warren, & Kaelbling, 1998; Meyer & Wilson, 1991). In this case,
available information is used to govern behavior in an on-line
manner. The path adopted by the agent is not planned in advance;
rather, it emerges as a consequence of the control laws by which
information modulates action. Because occurrent information reg-
ulates control variables directly, an internal model of the environ-
ment and explicit path planning become unnecessary. What ap-
pears to be planned sequential behavior can thus emerge from the
dynamic interaction between agent and environment, rather than
implicating an action plan.

It is precisely this interaction that is captured in our model of the
behavioral dynamics of steering and obstacle avoidance. The aim
of Experiment 3 was to see whether the simplest case of human
route selection could be accounted for by the model in terms of
on-line steering dynamics, without recourse to explicit path plan-
ning. Note that this is not a critical test of the two approaches, but
rather a demonstration of the sufficiency of a more parsimonious
information-based approach.

In the present experiment, we recorded the routes taken by
human participants around an obstacle to a goal, when the obstacle
was located between the initial heading direction and the goal
direction (Figure 1). We varied the initial distance of the goal (dg)
and the offset angle between the goal and the obstacle (�g � �o),
to determine the conditions under which people switch from
an outside to an inside path. We then tested whether the model
predicted the observed routes, using the parameter values de-

Figure 13. Simulated obstacle angle time series in Experiment 2. A: At
1°, 2°, 4°, and 8° in the 4-m condition. B: At 3, 4, and 5 m in the 4°
condition.
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rived in Experiments 1 and 2. To the extent that the model can
reproduce the human paths, this would suggest that it is possible in
principle to account for human route selection in terms of the
dynamics of elementary behaviors for steering and obstacle
avoidance.

Method

Participants. Ten undergraduate and graduate students, 4 women and
6 men who ranged in age from 18 to 26 years, participated in Experiment
3. None reported having any visual or motor impairment. They were paid
$6 for their participation.

Stimuli. As in the previous experiments, participants began walking
toward the distant marker when it turned green. After traveling 0.5 m, the
markers disappeared and participants continued walking and looking in the
same direction. After another 0.5 m, a blue goal post and a red obstacle
appeared simultaneously on the left or right of the participant’s path, with
the obstacle in between the heading direction and the goal direction (refer
to Figure 1A). First, we manipulated the initial offset angle between the
obstacle and the goal (�g � �o � 1°, 2°, 4°, or 8°) by holding the initial
goal angle constant (� � �g � 15°) and varying the initial obstacle angle
(� � �o � 14°, 13°, 11°, 7°). Second, we manipulated the initial goal
distance (dg � 5, 7, or 9 m) while holding the initial obstacle distance

constant (do � 4 m). Participants were instructed to walk to the goal while
avoiding the obstacle along the way, and they were told that they could
pass to either side of the obstacle. As in Experiment 2, a collision with the
obstacle was signaled by a “ping” if the point of observation came closer
than 0.32 m to the center of the obstacle.

Design. The experiment had a 4 (offset angle) � 2 (left, right) � 3
(goal distance) factorial design, with all variables within-subject. There
were four trials per condition, resulting in a total of 96 trials presented in
a random order.

Results and Discussion

Mean paths for each initial offset angle (different panels) and
initial goal distance (different curves) appear in Figure 15A, col-
lapsed so all objects appear on the right of the initial heading. The
most frequently selected route for each condition is represented by
the solid curve. Participants took both inside and outside paths to
the goal in nearly all conditions. However, as shown in Figure
15C, the distribution of paths shifted systematically across condi-
tions, such that the percentage of inside paths increased with the
offset angle and the nearness of the goal. On average, participants
switched from an outside path to an inside path at an offset angles
between 2° and 4°, and they were more likely to do so when the
goal was nearer. A two-way analysis of variance on the percentage
of inside paths revealed significant main effects of offset angle,
F(3, 27) � 94.83, p 	 .01, and goal distance, F(2, 18) � 53.46,
p 	 .01, with no interaction, F(6, 54) � 1.17, p � .34. In
summary, participants were more likely to switch from an outside
to an inside path as offset angle increased and goal distance
decreased. This confirms the necessity of including an explicit
term for goal distance in the model.

Simulations. We tested the model on scene configurations
similar to those in Experiment 3. The initial goal distance varied
between 5 and 9 m, and the initial offset angle between 1° and 15°,
while the initial goal angle (15°) and initial obstacle distance (4 m)
were held constant. Our first set of simulations used parameter
values determined from Experiment 1b for the goal component and
Experiment 2 for the obstacle component, as before. The model
successfully predicts the shift from outside to inside paths with
larger offset angles and nearer goals. Specifically, it generates
an outside path for offset angles � 7° and an inside path for
angles � 10°. Between 7° and 10°, the model takes an outside path
with larger goal distances and switches to an inside path with
smaller goal distances, replicating the qualitative pattern of human
routes.

The shift to inside paths, however, occurred at somewhat larger
offset angles for the model (7–10°) than for human participants
(2–4°). Thus, using parameter settings based on Experiments 1 and
2, the model is somewhat biased toward outside paths. One reason
for this may be that the first two experiments sampled a limited
range of conditions, and in particular they did not include cases in
which participants crossed in front of the obstacle to reach the
goal. It is possible that participants adapted their behavior (ad-
justed their “parameters”) to these conditions, so the parameter fits
did not generalize precisely to a wider range of conditions. We
thus performed a second set of simulations to determine whether
we could reproduce the pattern of routes observed in Experiment
3 with a minimal change in parameter values. Adjusting a single
parameter, c4, from 0.8 to 1.6, was sufficient to induce the shift
from an outside to an inside path at offset angles of 1° to 4° (see

Figure 14. Simulated state space trajectories in Experiment 2. A: At 1°,
2°, 4°, and 8° in the 4-m condition. B: At 3, 4, and 5 m in the 4° condition.
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Figure 15B). This increased the decay rate of obstacle repulsion
with distance, allowing closer approaches to obstacles, and thus c4

might be thought of as a “risk” parameter.
In these simulations, the effect of initial goal distance is a

consequence of the fact that the attractive strength of the goal, and
hence angular acceleration toward it, increase for nearer goals. The
effect of offset angle is a consequence of the trade-off between
the attractive strength of the goal, which increases with angle, and
the repulsive strength of the obstacle, which decreases with angle.
Initially, the goal component dominates, turning the agent in the
direction of the goal. However, the resulting decline in both goal
and obstacle angles reduces the attractive strength of the goal
while increasing the repulsive strength of the obstacle. Whether the
agent follows an inside or outside path depends on which compo-

nent dominates as the agent heads toward the obstacle. For small
offset angles, illustrated in Figure 16A–B, the goal angle is rela-
tively small as the agent turns toward the obstacle. Hence, obstacle
repulsion overcomes goal attraction, forcing the agent onto an
outside path. For large offset angles, in Figure 16C–D, the goal
angle is larger as the agent turns toward the obstacle. Hence, goal
attraction overcomes obstacle repulsion, drawing the agent onto an
inside path. Thus, the observed route arises from competition
between goal attraction and obstacle repulsion in the behavioral
dynamics.

Model dynamics. To gain a better understanding of the under-
lying dynamics, we plotted vector fields at several positions on
typical inside and outside routes (see Figure 17). Each plot repre-
sents the state space of heading (�) by turning rate (�̇) for one

Figure 15. Experiment 3 data. A: Mean paths in the 5-, 7-, and 9-m initial goal distance conditions for each
initial goal-obstacle offset angle. Solid lines correspond to the most frequently selected route in each condition.
B: Simulated paths with an initial offset angle of 2°, with parameter c4 � 1.6. C: Percentage of inside paths as
a function of initial goal-obstacle offset angle for each condition of initial goal distance. D: Model simulations
of the percentage of inside paths, with 10% error in perceptual variables and parameters and variability in initial
conditions matched to the human data.
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position in the environment. The small vectors illustrate the flow
of the system at each point in state space, the horizontal component
corresponding to the change in X (angular velocity �̇) and the
vertical component corresponding to the change in Y (angular
acceleration �̈) at that point. The heavy line is the nullcline at
which acceleration is zero and the vectors are purely horizontal. Its
intersections with the X-axis (the other nullcline, at which velocity
is zero) identify the system’s fixed points.

Because the four-dimensional system is difficult to visualize
(i.e., �, �̇, x, and z), we plot vector fields for a sequence of (x, z)
positions to better understand how the dynamics change as the
agent moves through this four-dimensional space. In Figure 17A,
the goal is initially located at 15° and 7 m and the obstacle at 11°
and 4 m from the agent’s starting position at (x, z) � (0, 0). In the
corresponding vector field (Figure 17B), there is a single attractor
at (�, �̇) � (15.2°, 0°/s), near the goal direction of �g � 15.0°
(filled arrow) on the other side from the obstacle (open arrow).
Although the location of the attractor is determined by the com-
bination of the goal and obstacle components, the goal component
dominates at this point because the goal angle is large and the
obstacle is distant, so the attractor is located near the goal
direction.

In Figure 17C, when the agent is to the left of the obstacle at (x,
z) � (0.4, 3.2), the goal and obstacle components interact consid-
erably. The system is bistable, with attractors at (2.8°, 0°/s) and
(46.3°, 0°/s), separated by a saddle point at (27.1°, 0°/s). The form
of this shift from one- to two-point attractors is analogous to a

tangent bifurcation in a first-order system (Strogatz, 1994). The
bistability means that the agent may accelerate either to the left or
right of �g � 21.6°, depending on the current heading and turning
rate. Note that although the two attractors lie to the left and right
of the obstacle at �o � 26.6°, they do not necessarily yield outside
and inside paths, respectively. Because the vector field changes as
the agent’s (x, z) position changes, the location and number of
attractors change as well.

In Figure 17D, the agent is passing to the right of the obstacle
at (x, z) � (1, 3) and there is a single attractor at (19.2°, 0°/s). The
attractor is located slightly to the right of the goal at �g � 12.2°
because the obstacle at �o � �14.3° still exerts an influence,
pushing the agent slightly to the right of the goal and well away
from the obstacle. After the agent is past the obstacle at (x, z) �
(1.25, 5.0) in Figure 17E, the obstacle exerts no influence and there
is a single attractor at (24.0°, 0°/s), in the same direction as the
goal at �g � 24.0°. Thus, the attractor locations are determined by
the competition between goal and obstacle components. Where the
obstacle component is weak, there is only a single attractor near
the goal direction. Where the obstacle component is strong, more
than one attractor may exist and none is aligned with the goal. In
this way the attractor landscape evolves as the agent moves
through the environment, and its behavior is structured by both
attractors and repellers.

Perceptual and parameter error. It is apparent from Figure 15
that there was some variation in human routes that is not repro-
duced by the model, as indicated by the distribution of paths on

Figure 16. Plots of changing contributions of goal and obstacle components for a sample outside route with
a 1° offset angle (A, B) and inside route with an 8° offset angle (C, D). In A and C, black circles along paths
represent 1-s time intervals, and black crosses represent the goal. In B and D, solid lines correspond to goal
component, and dotted lines correspond to obstacle component. Positive acceleration is in the clockwise
direction, and negative acceleration is in the counterclockwise direction.
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either side of the obstacle. This might be captured by the intro-
duction of variable error in perceptual variables (i.e., goal and
obstacle angle and distance) and parameters. At the same time, it
is important to determine whether the model is reasonably robust
to such error. We investigated the robustness issue by adding
variability to each perceptual variable and each parameter, both

individually and in various combinations, for selected configura-
tions used in Experiments 1 and 2. On each simulated trial, an error
constant was randomly selected for each perceptual variable or
parameter from a Gaussian distribution with a mean of 1.0 and a
standard deviation of 0.1. Variable error was added to the model
by multiplying the actual value of each perceptual variable or

Figure 17. A: Vector fields (� vs. �̇) at four points along typical outside and inside routes. B–E: For small
vectors, the vertical component represents angular acceleration (�̈), and the horizontal component represents
angular velocity (�̇). Solid curves represent nullclines at which �̈ is zero. Filled circles represent point attractors,
and empty circles represent repellers. Filled arrows indicate the goal direction (�g), and open arrows indicate the
obstacle direction (�o).
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parameter by the corresponding error constant. For the Experiment
1 configuration, initial goal angle was 20° and initial goal distance
was 4 m. For the Experiment 2 configuration, initial obstacle angle
was �4° and initial obstacle distance was 4 m. The effect of error
was measured by taking the standard deviation of the x-coordinate
halfway through the trial (Experiment 1 configuration) or when the
z-coordinate equaled that of the obstacle (Experiment 2 configu-
ration). The results, based on 1,000 simulations for each perceptual
variable or parameter (or combination), using 10% error are sum-
marized in Table 2. Parameter error yielded slightly more variabil-
ity than perceptual error, but in all cases the model tolerated both
types of error quite well. Even when 10% error was added to all
perceptual variables and parameters at the same time, the standard
deviation of x-position was only 4.15 cm in the Experiment 1
configuration and 11.55 cm in the Experiment 2 configuration.

We then determined whether the distribution of human paths
observed in Experiment 3 could be reproduced by introducing
variable error. We simulated the model under the same conditions
used in Experiment 3, adding 10% error to each perceptual vari-
able and parameter. We also randomly varied the initial x-position
and heading on each simulated trial, matching the standard devi-
ation to the mean standard deviation observed in Experiment 3
(SD � 0.16 cm for initial x-position and SD � 6.58° for initial
heading). The percentage of inside paths is plotted as a function of
initial offset angle for each initial goal distance in Figure 15D.
Comparing the simulations to the human data in Figure 15C, it is
clear that the observed distribution of paths can be effectively
reproduced by adding variable error to the model and matching the
initial conditions.

Thus, the model can predict the qualitative behavior of human
route selection using parameter settings from Experiments 1 and 2,

and it can reproduce those routes quantitatively with an adjustment
in a single “risk” parameter. Furthermore, the distribution of
human paths is captured by the addition of 10% perceptual and
parameter error in the model and variation in initial conditions.
This pattern of results demonstrates that simple route selection can
be accounted for in terms of elementary behavioral components for
steering and obstacle avoidance.

General Discussion

In the research we report here, we sought to derive a model of
the behavioral dynamics of human steering and obstacle avoidance
and use it to predict route selection in simple scenes. In the first
experiment, we collected descriptive data on walking toward a
goal and found that steering exhibited point attractor dynamics that
depended on initial goal angle and distance. In the second exper-
iment, similar data on obstacle avoidance revealed repeller dynam-
ics that also depended on initial obstacle angle and distance. We
modeled the steering dynamics as a linear combination of a goal
term and an obstacle term. The attraction of the goal increased
linearly with its angle from the current heading and decreased
exponentially with distance, whereas the repulsion of the obstacle
decreased exponentially with angle and with distance. In the last
experiment, we used the model to predict route selection in the
simplest case of steering to the left or right of an obstacle. Param-
eter settings derived from the first two experiments generated the
qualitative pattern of routes, and an adjustment in one “risk”
parameter reproduced them quantitatively. Steering behavior, ob-
stacle avoidance, and route selection thus emerge from a system
that simply follows locally specified attractors.

We believe the contributions of this work are threefold. First,
the results provide the first parametric data of which we are aware
on the fundamental human behavior of walking to goals and
avoiding obstacles. Second, the model represents the extension of
a dynamical systems analysis from simple laboratory tasks with
stationary dynamics to complex behavior whose dynamics depend
on the interaction between the agent and the environment. Third,
the results provide the first demonstration we know of that not only
attractors but also repellers serve to structure behavior in biolog-
ical systems, analogous to the work of Schöner et al. (1995) in
robotics.

Regarding the human data, several basic observations can be
made. First, people make gradual turns during walking, changing
their heading direction over several steps rather than pivoting on
one foot to abruptly switch directions, thereby mitigating the
inertial effects of changing direction. On the other hand, they do
not travel on a continuous arc to the goal, but turn onto an
approximately linear path that aligns their heading direction with
the goal. This is consistent with the idea that, at least in open field
walking, people control their current heading so that it is aligned
with the goal, and it is contrary to theories that suggest people
follow curved paths to a target (Lee, 1998; Wann & Swapp, 2000).
Second, the rate of turning is influenced by both the distance of a
goal or obstacle and its angle with respect to the heading direction.
Turning is thus not a biomechanically stereotyped act but appears
to be governed by information about the observer’s movement
relative to objects in the scene.

Table 2
Effects of 10% Perceptual and Parameter Errors
in Experiment 1 and 2 Configurations

Source of error

SD of x-position

Experiment 1 Experiment 2

Perceptual variables

Goal angle 1.51 1.26
Goal distance 1.78 1.21
Obstacle angle 4.39
Obstacle distance 3.82
All 2.06 6.63

Parameters

b 2.52 2.56
kg 2.79 2.90
c1 1.74 1.17
c2 1.98 2.41
ko 2.39
c3 6.89
c4 4.13
All 4.05 9.44

Perceptual variables and parameters

All 4.15 11.55
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Dynamics of Steering and Obstacle Avoidance

The model itself can be evaluated in two ways: as a descriptive
model of the behavioral dynamics of steering and obstacle avoid-
ance and as a predictive model of route selection. In the first
instance, we believe the model does a good job of capturing the
behavioral dynamics. It compactly describes the behavior of steer-
ing toward a goal or around an obstacle with fits near r2 � 1.0. The
linear combination or superposition of goal and obstacle terms is
advantageous because the model scales linearly with the complex-
ity of the scene, adding a term for each new object (Large,
Christensen, & Bajcsy, 1999). In practice, the model is even more
efficient, because it only depends on information about objects that
appear within a restricted zone in depth and about the current
heading. Specifically, the obstacle component decreases to near
zero at a distance of about 4 m and an angle of �60° from the
heading direction (Figure 2B). This implies that human steering
behavior is not based on the complete 3-D layout of the scene, but
on a limited sample of the next few objects near the path of travel.
Such a result is consistent with use of on-line information for
steering control, rendering a detailed internal world model and
explicit path planning unnecessary.

Another type of internal representation often thought to be
necessary for control is a model of the plant dynamics (Loomis &
Beall, 1998). Such a model of the relationship between control
variables and resulting body movements would allow the agent to
predict future states of the body. However, if behavior is a con-
sequence of laws of control and physical constraints, an explicit
model of the plant dynamics is unnecessary. Instead, the agent
might simply learn parameter settings for the control law that yield
successful behavior within the given physical constraints. If these
constraints change (e.g., if the agent’s mass increases or the
medium changes from air to water), the agent may adapt by tuning
the parameters to stabilize behavior again. Thus, the agent’s
“model” of the plant dynamics is simply a set of parameter values
that result in successful behavior within given constraints.

Route Selection

We also believe that the model is a promising first account of
route selection. By fitting the model to human data from the
limited conditions of Experiments 1b and 2, we were able to
predict the qualitative pattern of routes observed in the simple case
in Experiment 3. It is likely that fitting the model to data from
more general conditions would allow us to make more quantitative
predictions. Thus, our current research fixes parameters on the
basis of Experiment 3 and attempts to predict human routes
through more complex scenes by linearly combining terms for
goals and obstacles, including pairs of obstacles, random arrays of
obstacles, and cul-de-sacs (Fajen, Beem, & Warren, 2002).

The main limitation of the model is that it currently represents
obstacles as points. This is unrealistic for complex scenes that
contain wide obstacles or extended surfaces such as walls. Such
objects might be represented in the model either by adjusting the
decay rate of the repulsion function (parameter c3 in Equation 12;
see Figure 2B), or by treating a wide obstacle as a set of points at
finite intervals and summing their influence. The latter predicts
that people turn away from wide obstacles faster than from small
ones. The effects of obstacle width on steering behavior and route

selection remain to be empirically investigated. On the other hand,
body width is implicitly represented in the model by the “risk”
parameter c4, the decay rate of repulsion with distance (Warren &
Whang, 1987).

A next step is to generalize the model from stationary goals and
obstacles to moving goals and obstacles. In recent experiments, we
found that humans intercept moving targets by seeking to achieve
a constant angle between the target and the heading (Fajen &
Warren, 2002). This can be incorporated in the model by adding a
term to the goal angle that depends on the angular velocity of the
target (�̇g), so as to shift the attractor ahead of the target by an
amount proportional to target speed. A similar term might be
inserted into the obstacle component to avoid moving obstacles.
When the steering model for an individual agent is complete, it
would allow us to simulate the behavior of multiple interacting
agents in a dynamic environment, including crowd behavior.

The present results demonstrate that it is possible, in principle,
to account for human route selection as a consequence of elemen-
tary behaviors for steering and obstacle avoidance. In effect, the
agent adopts a particular route through the scene on the basis of
local responses to visually specified goals and obstacles. The
observed route is not determined in advance through explicit
planning, but rather emerges in an on-line manner from the agent’s
interactions with the environment. It is possible, of course, to
develop an off-line path planning account of the results from
Experiment 3; the model simply demonstrates that a more parsi-
monious on-line account is plausible and adequate to the data. It is
also possible that familiarity with the layout of goals and obstacles
would influence route selection in a manner that cannot be cap-
tured by the model in its current form. We are currently investi-
gating how route selection changes with experience and consider-
ing ways of expanding the model to accommodate these changes.
Such changes might simply be captured by the tuning of param-
eters in the model.

Behavioral Dynamics and Control Laws

The present model differs from the robotic control model of
Schöner et al. (1995) in two closely related ways. First, because it
describes the observed behavior of an inertial agent, we were
forced to abandon a first-order system and adopt a higher-order
system. Second, our model treats steering adjustments as transient
behavior en route to a stable attractor (heading in the goal direc-
tion). In contrast, Schöner et al.’s model is a first-order system that
is at all times in an attractor state and thus stable at every moment.
The significance of such a first-order model is that it permits the
integration of multiple constraints (goals and obstacles in arbitrary
positions) in such a way that a solution can be assured, guaran-
teeing that the observer does not collide with an obstacle, become
trapped in a local minimum, oscillate between two goals, or not
reach the goal. In contrast, there is no way to ensure that transient
solutions satisfy multiple arbitrary constraints. These differences
follow directly from Schöner et al.’s modeling of a control system
at the first level of analysis, whereas we modeled the behavioral
dynamics of a physical agent at the second level of analysis.
First-order control laws may be advantageous to achieve well-
behaved solutions under multiple constraints. At the same time,
observed behavior is a consequence of these control laws interact-
ing with the physics of the body and environment and thus requires
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a higher-order description. As outlined in the introduction, we
suggest that these two levels of analysis, and hence the two
models, are complementary. Now that we have a formal descrip-
tion of the behavioral dynamics of steering, we can consider
whether a first-order control law can give rise to this behavior.

Let us assume that a first-order control law is embedded within
a second-order system representing the physical body. The form of
the control law can be borrowed from the terms in our model,
which capture the behavioral influence of goals and obstacles:

�̇
 � �kg �� � �g��e�c1dg � c2� � ko �� � �o�

� �e�c3����o�)(e�c4do�. (13)

This control law is a dynamical system that takes the visually
specified current heading, goal angle and distance, and obstacle
angles and distances, and immediately relaxes to an attractor for
the intended heading at a value �*. A prime has been added to the
angular acceleration (�̈
) to distinguish the control law from phys-
ical acceleration of the body. Note that �* is determined by the
combination of goal and obstacle terms, and it may not necessarily
correspond to the direction of the goal. Given the intended head-
ing, the angular acceleration of the body is then determined by a
second-order system, whose parameters are independent of the
layout of goals and obstacles in the world:

�̈ � �bb�̇ � kb �� � �*�. (14)

Because of the body’s inertia, the resulting behavior has a slower
relaxation time than the control law, so the actual heading lags
behind the intended heading. Thus, whereas the control law tracks
a stable attractor, the observed behavior is transient. Note that this
concept of a control law as a dynamical system is distinct from
conceiving of it as a simple mapping from an optical variable to an
action variable.

In simulations performed by Philip Fink (a postdoctoral research
associate in the VENLab), we tested this embedded model with a
goal and one obstacle, under the conditions of Experiment 2. Mean
paths were nearly identical to those of the higher order model, and
least-squares fits to the mean time series of goal angle had a mean
r2 � .991. The resulting parameter values, which were naturally
different from the higher order model, were kg � 59.1625, c1 �
0.0555, c2 � 0.01125, ko � 842, c3 � 2.74063, c4 � 0.04653,
bb � .0375, and kb � 592. Thus, the higher order behavioral
dynamics that we observed experimentally can be accounted for in
terms of a first-order control system, preserving the advantages of
a stable solution that satisfies multiple constraints. These results
demonstrate that the behavior of steering and obstacle avoidance
can be modeled consistently at two levels, the first involving
interactions between a first-order control law and the physics of
the body and world, and the second providing a higher order
description of the emergent behavior.

It is important to show that the informational variables in the
control law are perceptually available. Although we parameterized
the model in terms of object distance, the control law might be
based on either the perceived distance of the object or the per-
ceived time-to-contact specified by the optical 	 variable (Bootsma
& Craig, 2002; Lee, 1980). Given that the influence of obstacles
gradually asymptotes to zero around 4 m and the influence of the
goal to a constant value beyond 8 m, accurate perception of

distance or time-to-contact is not essential. With time-to-contact
less than 4 s, obstacles are within the range of sensitivity to 	
(Schiff & Detwiler, 1979), and given that the control process is
continuous accuracy improves as an obstacle is approached.

Goal and obstacle angles are also perceptually specified. Warren
et al. (2001) found that walking is guided by a combination of the
visual direction of the goal with respect to the heading specified by
optic flow ��flow � �g�, and the egocentric direction of the goal
with respect to the locomotor axis, which is presumably specified
proprioceptively ��loco � �g�. Thus, we can expand the infor-
mational term in the goal component of the control law as

� � �g � �� loco � �g� � wv ��flow � �g�, (15)

where v is observer velocity and w represents environmental
structure, both of which influence the magnitude and area of optic
flow. It remains to be empirically determined whether the obstacle
component can be similarly expanded.

Comparison With Other Models

Our dynamical model bears a resemblance to potential field
models of path planning (Khatib, 1986), which also represent
behavior as transients to attractor states. However, in comparative
simulations of the two models, we observed some notable differ-
ences (see Fajen, Warren, Temizer, & Kaelbling, in press, for
details). First, in the potential field approach the attractors and
repellers are defined as the two-dimensional positions of goals and
obstacles in the world, whereas the dynamical approach defines
them as values of the behavioral variables (heading and turning
rate). Thus, whereas behavior is determined by the agent’s position
in the potential field model, behavior in our dynamical model is
determined by the agent’s position, heading, and turning rate.
Second, whereas potential field models control translation direc-
tion, the present dynamical model determines angular acceleration
and thus tends to yield smoother trajectories. Third, as a conse-
quence of acceleration, our dynamical model can produce different
paths for different translation speeds. In contrast, because the
potential field equations determine the direction of the agent’s
motion from its position, it always traverses the same path regard-
less of speed. Finally, comparative simulations reveal that the
dynamical model generates markedly smoother and shorter paths
to the goal and that local minima can be avoided by reducing the
decay rate of the “risk” parameter c4.

We should point out that the observed human paths depart
dramatically from a simple shortest path criterion (see particularly
Figure 15). To our knowledge, no other models have been pro-
posed for locomotor paths that take obstacle avoidance into ac-
count. Note that the present model does not incorporate an explicit
optimality principle, although its form or parameter values could
result from such principles over the course of evolution or learn-
ing, such as a combination of minimizing energy and injury.

Conclusion

In summary, the present model captures the behavioral dynam-
ics of human steering and obstacle avoidance with good fidelity,
and it can reproduce the pattern of routes through a simple scene.
This suggests that human route selection does not require explicit
planning but may emerge on-line as a consequence of elementary
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behaviors for steering and obstacle avoidance. We are currently
investigating whether the present form of the model can also
account for route selection in more complex scenes.
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Appendix

Full Model Equations

The full model is given by the following equation:

�̈ � � b�̇ � kg �� � �g��e�c1dg � c2�

� �
i�1

#obstacles

ko �� � �oi� e�c3����oi� �e�c4doi�. (A1)

Note that �g, dg, �o, and do change as the position of the agent changes (see
Figure 1A). However, each of these variables can be expressed as a
function of the (x, z) position of the observer:

�g � cos�1 � �Zg � z�

dg
� , (A2)

dg � ��Xg � x�2 � �Zg � z�2�1/ 2, (A3)

�o � cos�1 � �Zo � z�

do
� , (A4)

and

do � ��Xo � x�2 � �Zo � z�2�1/ 2, (A5)

where (Xg, Zg) and (Xo, Zo) are the coordinates of the goal and obstacle,
respectively. Written as a system of first-order differential equations, the
model is given by the following:

ẏ1 � �̇,

ẏ2 � ÿ1 � �̈ � �by2 � kg �y1 � �g��e�c1dg � c2�

� �
i�1

#obstacles

ko �y1 � �oi� e�c3�y1��oi� �e�c4doi�, (A6)

ẏ3 � ẋ � V sin y1,

ẏ4 � ż � V cos y1,

where V is the speed of the observer, which was held constant at 1 m/s in
our simulations.
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